The PETEX™ Production Collection

Oil and Gas Production Series
Analysis for Well Completion
Artificial Lift
Beam Pumping
Cased-Hole Logging
Coring and Core Analysis
Corrosion Control
Improved Recovery
Open-Hole Logging
Reciprocating Gas Compressors
Well Cementing
Wireline Operations

Related Titles
Gas and Liquid Measurement
LNG: Basics of Liquefied Natural Gas
Oil and Gas: The Production Story
Petroleum Production Operations
Primer of Oil and Gas Measurement
The Beam Lift Handbook
Treating Oilfield Emulsions
Norman W. Hein, Jr. has worked in the upstream production side of the oil and gas industry for more than 38 years. Throughout his distinguished career, he has contributed his time, energy, and talent to a variety of assignments all over the world—ranging from jobs that required research, development, and testing to ventures that demanded his expertise in production engineering, manufacturing, land and offshore project management, industry standardization, and the principles of artificial lift.

Before establishing his own consulting company, Oil and Gas Optimization Specialists, Ltd. (OGOS) in 2003, Norman worked for Conoco and later Conoco Phillips. In 2010, he signed on with the sucker rod division of Norris Production Solutions (now, Dover Artificial Lift) and later served as Senior Advisor for CONSOL Energy in Canonsburg, PA. Currently, Norman is the president and general manager of OGOS where he is actively pursuing consulting, troubleshooting, and training opportunities.

A proven innovator, Norman holds 11 domestic patents and over 50 international patents. He has given more than 100 technical presentations and has taught courses on artificial lift, production operations, production chemicals, corrosion, and well/field optimization both at home and abroad.

Norman has written books on surface dynamometer card interpretation and authored two SPE Distinguished Author Series papers—one on artificial lift method selection and another on sucker rod lift field optimization. More recently, Norman authored a chapter on sucker rod lift for the latest edition of the SPE Petroleum Engineering Handbook.

Norman was a founding member of the Artificial Lift Research and Development Council (ALRDC) and currently serves on this organization’s board of directors. He has been awarded the J.C. Sloniger Award from the Southwest Petroleum Short Course in Lubbock, TX, a Letter of Appreciation from ANSI/API for his leadership and contributions to the oil and gas industry, and the Certificate of Service from API. Norman holds a B.S. degree in Metallurgy with a minor in Manufacturing and a M.S. degree in Materials Science from the University of Illinois.
Units of Measurement

Throughout the world, two systems of measurement dominate: the English system and the metric system. Today, the United States is one of only a few countries that employ the English system.

The English system uses the pound as the unit of weight, the foot as the unit of length, and the gallon as the unit of capacity. In the English system, for example, 1 foot equals 12 inches, 1 yard equals 36 inches, and 1 mile equals 5,280 feet or 1,760 yards.

The metric system uses the gram as the unit of weight, the metre as the unit of length, and the litre as the unit of capacity. In the metric system, 1 metre equals 10 decimetres, 100 centimetres, or 1,000 millimetres. A kilometre equals 1,000 metres. The metric system, unlike the English system, uses a base of 10; thus, it is easy to convert from one unit to another. To convert from one unit to another in the English system, you must memorize or look up the values.

In the late 1970s, the Eleventh General Conference on Weights and Measures described and adopted the Systeme International (SI) d’Unites. Conference participants based the SI system on the metric system and designed it as an international standard of measurement.

The Oil and Gas Production Series gives both English and SI units. And because the SI system employs the British spelling of many of the terms, the book follows those spelling rules as well. The unit of length, for example, is metre, not meter. (Note, however, that the unit of weight is gram, not gramme.)

To aid U.S. readers in making and understanding the conversion system, we include the table on the next page.
English-Units-to-SI-Units Conversion Factors

<table>
<thead>
<tr>
<th>Quantity or Property</th>
<th>English Units</th>
<th>Multiply English Units By</th>
<th>To Obtain These SI Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length, depth, or height</td>
<td>inches (in.)</td>
<td>25.4</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td></td>
<td>feet (ft)</td>
<td>0.3048</td>
<td>metres (m)</td>
</tr>
<tr>
<td></td>
<td>yards (yd)</td>
<td>0.9144</td>
<td>metres (m)</td>
</tr>
<tr>
<td></td>
<td>miles (mi)</td>
<td>1609.344</td>
<td>metres (m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.61</td>
<td>kilometres (km)</td>
</tr>
<tr>
<td>Hole and pipe diameters, bit size</td>
<td>inches (in.)</td>
<td>25.4</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td>Drilling rate</td>
<td>feet per hour (ft/h)</td>
<td>0.3048</td>
<td>metres per hour (m/h)</td>
</tr>
<tr>
<td>Weight on bit</td>
<td>pounds (lb)</td>
<td>0.445</td>
<td>decanewtons (dN)</td>
</tr>
<tr>
<td>Nozzle size</td>
<td>32nds of an inch</td>
<td>0.8</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td></td>
<td>barrels (bbl)</td>
<td>0.159</td>
<td>cubic metres (m³)</td>
</tr>
<tr>
<td></td>
<td>gallons per stroke (gal/stroke)</td>
<td>0.00379</td>
<td>cubic metres per stroke (m³/stroke)</td>
</tr>
<tr>
<td></td>
<td>ounces (oz)</td>
<td>29.57</td>
<td>millilitres (mL)</td>
</tr>
<tr>
<td>Volume</td>
<td>cubic inches (in.*)</td>
<td>16.387</td>
<td>cubic centimetres (cm³)</td>
</tr>
<tr>
<td></td>
<td>cubic feet (ft³)</td>
<td>0.0283</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>quarts (qt)</td>
<td>0.9464</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>gallons (gal)</td>
<td>3.7854</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>pounds per barrel (lb/bbl)</td>
<td>2.2046</td>
<td>kilograms per barrel (kg/bbl)</td>
</tr>
<tr>
<td></td>
<td>barrels per ton (bbl/tn)</td>
<td>0.1727</td>
<td>cubic metres per tonne (m³/tn)</td>
</tr>
<tr>
<td>Pump output and flow rate</td>
<td>gallons per minute (gpm)</td>
<td>0.00379</td>
<td>cubic metres per minute (m³/min)</td>
</tr>
<tr>
<td></td>
<td>gallons per hour (gph)</td>
<td>0.00379</td>
<td>cubic metres per hour (m³/h)</td>
</tr>
<tr>
<td></td>
<td>barrels per stroke (bbl/stroke)</td>
<td>0.159</td>
<td>cubic metres per stroke (m³/stroke)</td>
</tr>
<tr>
<td></td>
<td>barrels per minute (bbl/min)</td>
<td>0.159</td>
<td>cubic metres per minute (m³/min)</td>
</tr>
<tr>
<td>Pressure</td>
<td>pounds per square inch (psi)</td>
<td>6.895</td>
<td>kilopascals (kPa)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.006895</td>
<td>megapascals (MPa)</td>
</tr>
<tr>
<td>Temperature</td>
<td>degrees Fahrenheit (°F)</td>
<td>°F - 32</td>
<td>degrees Celsius (°C)</td>
</tr>
<tr>
<td>Mass (weight)</td>
<td>ounces (oz)</td>
<td>28.35</td>
<td>grams (g)</td>
</tr>
<tr>
<td></td>
<td>pounds (lb)</td>
<td>453.59</td>
<td>grams (g)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4536</td>
<td>kilograms (kg)</td>
</tr>
<tr>
<td></td>
<td>tons (tn)</td>
<td>0.9072</td>
<td>tonnes (t)</td>
</tr>
<tr>
<td></td>
<td>pounds per foot (lb/ft)</td>
<td>1.488</td>
<td>kilograms per metre (kg/m)</td>
</tr>
<tr>
<td>Mud weight</td>
<td>pounds per gallon (ppg)</td>
<td>119.82</td>
<td>kilograms per cubic metre (kg/m³)</td>
</tr>
<tr>
<td></td>
<td>pounds per cubic foot (lb/ft³)</td>
<td>16.0</td>
<td>kilograms per cubic metre (kg/m³)</td>
</tr>
<tr>
<td>Pressure gradient</td>
<td>pounds per square inch per foot (psi/ft)</td>
<td>22.621</td>
<td>kilopascals per metre (kPa/m)</td>
</tr>
<tr>
<td>Funnel viscosity</td>
<td>seconds per quart (s/qt)</td>
<td>1.057</td>
<td>seconds per litre (s/L)</td>
</tr>
<tr>
<td>Yield point</td>
<td>pounds per 100 square feet (lb/100 ft²)</td>
<td>0.48</td>
<td>pascals (Pa)</td>
</tr>
<tr>
<td>Gel strength</td>
<td>pounds per 100 square feet (lb/100 ft²)</td>
<td>0.48</td>
<td>pascals (Pa)</td>
</tr>
<tr>
<td>Filter cake thickness</td>
<td>32nds of an inch</td>
<td>0.8</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td>Power</td>
<td>horsepower (hp)</td>
<td>0.75</td>
<td>kilowatts (kW)</td>
</tr>
<tr>
<td>Area</td>
<td>square inches (in²)</td>
<td>6.45</td>
<td>square centimetres (cm²)</td>
</tr>
<tr>
<td></td>
<td>square feet (ft²)</td>
<td>0.0929</td>
<td>square metres (m²)</td>
</tr>
<tr>
<td></td>
<td>square yards (yd²)</td>
<td>0.8361</td>
<td>square metres (m²)</td>
</tr>
<tr>
<td></td>
<td>square miles (mi²)</td>
<td>2.59</td>
<td>square kilometres (km²)</td>
</tr>
<tr>
<td></td>
<td>acre (ac)</td>
<td>0.40</td>
<td>hectares (ha)</td>
</tr>
<tr>
<td>Drilling line wear</td>
<td>ton-miles (tn•mi)</td>
<td>14.517</td>
<td>megajoules (MJ)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.459</td>
<td>tonne-kilometres (t•km)</td>
</tr>
<tr>
<td>Torque</td>
<td>foot-pounds (ft•lb)</td>
<td>1.3558</td>
<td>newton metres (Nm)</td>
</tr>
</tbody>
</table>
Planning an Artificial Lift Program

In this chapter:

- Fundamental principles of artificial lift
- Design factors to consider
- Assessing and predicting reservoir performance
- PI and IPR curve methods
- Rate of outflow and reservoir recovery
- Minimizing downtime and maximizing production

In many cases, a well completed in a new reservoir will flow on its own with the energy for production coming from pressure in the reservoir. Over time, however, natural reservoir pressure will drop. The flow of oil and gas from the well will diminish and eventually cease to flow, leaving a great deal of recoverable hydrocarbons still in place. Artificial lift is any means of supplementing the reservoir’s energy or furnishing the power necessary to bring that oil and gas to the surface. Thus, artificial lift increases production and results in increased recovery of reserves.

Installing artificial lift can be done at any time in the well’s life, and there are many different artificial lift methods available to stimulate production. Each has its advantages and disadvantages that must be considered. Ultimately, the one that is selected should result in optimum production and recovery of reserves. However, there is no “best” method; each has a window of suitability depending on the characteristics of the well and the production capacity of the reservoir.
Sucker Rod Pumping

In this chapter:

- Basic principles of sucker rod lift
- Operation of a beam pumping unit
- Counterbalancing in a beam pumping unit
- Fluid pound and gas locking
- Operation of a pneumatic pump

As previously discussed, new reservoirs produce natural pressure, and it is this pressure that causes a well to flow for an extended period of time on its own. Eventually, however, this pressure subsides to such a degree that oil and gas do not reach the surface. When commercial amounts of oil and gas remain in the reservoir, an artificial lift system is employed to raise and amass these hydrocarbons. Multiple systems are available for this purpose, so several factors must be considered before one is selected and installed, including the characteristics of the reservoir and the inflow and outflow characteristics of the well. Apart from geological considerations and technical requirements, cost and the rate of return determine which lift system is selected and ultimately installed.

Sucker rod lift, or reciprocating rod lift, is the most widespread form of artificial lift. Used since the earliest days of the oil industry, sucker rod pumps are functionally the same as pumps used to lift water from wells in ancient China, Egypt, and the Roman Empire. Basically, a sucker rod pumping system consists of three parts: a bottomhole pump, rods to transmit power from the surface to the pump, and a surface pumping unit to furnish power to the rods in the form of reciprocating motion (fig. 13). The beam pumping unit illustrated is the most widely used type.
As previously discussed, sucker rod lift offers the oil and gas industry many benefits. These systems have the capacity to exhaust reservoirs of their hydrocarbons, and they can tolerate high-temperature or viscous oils with relative ease. Easy to maintain and notably reliable, this tried-and-true machinery is identified by its distinctive shape and admired for its ruggedness.

While this type of lift system can deplete many wells of their hydrocarbon accruals, it has proven far less effective in wells that are significantly curved. Its high-profile exterior, albeit familiar, is considered by passersby to be a major downside, especially in urban areas.

To service more populous areas, gas lift offers a less obtrusive and low-cost alternative to sucker rod pumping. The following sections examine the central components of these systems and illustrate how they are interconnected and function. As will be made clear, the decision to adopt this form of artificial lift is dependent on many of the same factors that influence the implementation or rejection of sucker rod pumping.

Use of plunger lift, another option for bringing fluid to the surface through artificial means, has expanded over the years, increasing the productivity of some wells many times over. An examination of this system’s essential components and related processes follows.
Hydraulic Pumping

In this chapter:

• Basic operation of a hydraulic pump
• Features of hydraulic pumping units
• Facts about power-oil pumps
• Open and closed power-oil systems
• Operation of a hydraulic jet pump

As previously discussed, gas lift and plunger lift systems are known for their flexibility and economy. Gas lift is cost-effective and easy to operate, and the downhole equipment associated with it is fairly inexpensive. High production volumes can be obtained using gas lift, and such systems perform well even under adverse conditions or in crooked holes. Likewise, plunger lift, with its low profile, can help even highly-deviated wells produce more efficiently. Neither lift system, however, is flawless nor the most appropriate in all instances. Instead, hydraulic pumping, which has also proven to be adaptable in the field, might be a viable option.

C. J. Coberly of Kobe, Inc. first introduced hydraulic pumping to the oil industry in the early 1930s. The hydraulic piston pump used in this system is similar to the pump used in sucker rod pumping. It operates by a directly coupled hydraulic engine that is powered by a high-pressure fluid (either oil or water, up to 6,000 psi), which is pumped from the surface. The following sections take a closer look at the evolution of hydraulic pumping systems.
Electric Submersible Pumping

In this chapter:
- Aspects of conventional ESP installations
- Bottomhole assembly and surface equipment
- Application factors to keep in mind
- Use and operation in waterflood projects
- Layout of cable-suspended submersible pumps

As previously discussed, a hydraulic pumping system, like gas lift and plunger lift, might prove to be the best choice, depending on the location of the production site and the curvature of the well. Highly adaptable and easy to install, these inconspicuous machineries have the potential to yield fluid fairly efficiently regardless of depth and volume restrictions, especially when compared to sucker rod pumps.

Abrasive materials, such as sand, however, can plague hydraulic pumping systems, and unlike gas lift, they are impacted more so by the effects of corrosion. If corrosion is anticipated, electric submersible pumping offers another possibility for improving well production.

The electric submersible *multistage centrifugal pump* was introduced to the oil industry as a means of artificial lift by the Reda Pump Company in the late 1920s. Since that time, several other companies have developed electric submersible pumps, often called ESPs, for oil field use. This type of pump is now available in a large number of sizes, capacities, and operating voltages. In a conventional installation, the pump assembly and an electric motor are run into the well on the production tubing. Electric power is conducted to the assembly by a cable attached to the tubing (fig. 42).
Index

Throughout this index, \(f \) indicates a figure and \(t \) indicates a table on that page.

acidizing, 8
air, 42, 43f, 44f, 45, 45f
air-balanced pumping unit, 27, 28f
American Petroleum Institute (API), 16, 17, 24
ammeters, 72
annular space, 29, 42
artificial lift
 definition of, 1, 17
 reasons for using, 19
 types of, 2
artificial lift planning
 cost considerations in, 4, 15, 17
 design factors to consider in, 3–4, 17, 19
 environmental, health and safety concerns in, 16, 17
 overview of, 1–2
 reservoir performance and, 4–6
 using IPR and PI to assist design, 10
 well inflow characteristics and, 6–11
 well outflow characteristics and, 11–14
 asphaltene content of oil, 3
automatic time cycle, 51
back-pressure, 11, 45, 48
beam-balanced pumping unit, 27, 28f
beam pumping units, 2, 19, 20f, 25–27, 25f, 26f.
 See also sucker rod pumping unit.
belt drive, 26
boot, 60
bottom-discharge submersible pump, 76, 78f
bottomhole flowing/producing pressure. See \textit{stabilized bottomhole flowing pressure (P}_{wf})
bottomhole pressure, 32, 43, 45, 46, 52. See also \textit{stabilized bottomhole flowing pressure (P}_{wf});
stabilized bottomhole shut-in pressure (P).
bottomhole pumps
 electric submersible pumps (ESPs), 68f, 69
 hydraulic, 57–58, 57f, 58f, 65
 sucker rod, 23–24, 39
bottom-intake configuration, 75–76, 75f, 82
bubble point (\(P_b \)), 3, 9, 9f, 11, 32
bypass plunger, 48
bypass valve, 49f, 50, 52
cable, electric, 71, 72f, 81, 82
cable harness, 69
cable-suspended submersible pumps, 79–80, 79f
cable-tool rig, 25
cable-wind pumping unit, 35, 35f
capacitors, 72
casing
 horsepower maximums for, 69t
 in Kobe pumps, 55, 55f
 in the sucker rod pumping unit, 20f
 pressure and, 29, 48
 size of and bottom-intake configuration, 76
 size of prohibiting production, 75
casing free hydraulic pumping assembly, 56f, 57f, 58f, 59f
casinghead, 33
casing pumps, 23, 24
casing strings, 26f
cavitation, 64
centrifugal pump, 71, 73, 82
chamber gas lift, 46, 46f, 52
check valve, 21–22, 39
choke, 11, 12f
Christmas tree, 11, 12f
clearance volume, 31
ARTIFICIAL LIFT

closed power-oil system, 60, 61, 61f, 65
closed-system production injection, 76, 77f
Coberly, C.J., 53
compounding in reverse, 15, 15f
compression ratio, 31, 32, 34
compressor, 31
concentric free hydraulic pumping assembly, 58f
continuous-flow gas lift, 42–43, 43f, 48, 52
conventional hydraulic pumping assembly, 58f, 59f
cooling, motor, 81
corrosion
 electric submersible pump and, 67
gas lifts and, 42, 47
hydraulic pumping and, 64
sucker rod pumping and, 38
corrosoness, 3
cost considerations
 cable-suspended submersible pumps, 80
electric submersible pumps (ESPs), 81
fluid pound, 29
gas lifts, 47, 52
hydraulic pumping units, 34
in planning an artificial lift system, 4, 15, 17
jet hydraulic pumps, 61
plunger lifts, 51
sucker rod pumping units and, 38
counterbalance weight, 27
counterbalancing, 27, 28f, 32, 34
counterweight, 26f, 27, 39
crank, 26
crank arm, 26
clank-balanced pumping unit, 27, 28f
crank pin bearing, 26
crooked holes. See also deviated boles.
 electric submersible pumps (ESPs) and, 80
gas lifts and, 47
 Kobe pumping units and, 56
 plunger lifts and, 51
 sucker rod pumping systems and, 38, 41
 crude oil, 9, 65
cylinder liners, 60

cylinders

close air, 27, 28f
counterbalance, 32, 33f
hydraulic, 32
pneumatic, 32
power, 32, 33f
deep wells, 24, 43, 47, 52
density, 3
depth of unit, 38
derrick, 25
deviated holes, 53, 65. See also crooked boles.
diffuser, 63, 63f
discounting, 15, 15f
downtime, 15, 27. See also productivity, well.
drawdown, 6, 14
dynamic loading, 35. See also loading.
dynamometer, 38
dynamometer cards, 22, 29
economic evaluation. See cost considerations.
elastomer, 36
electric cables, 71, 72f, 81, 82
electric motor, 38, 69
electric-motor drive engines, 25, 25f
electric submersible progressing cavity pump (ESPCP), 36
electric submersible pumps (ESPs)
 advantages and disadvantages of, 73, 80–81, 82
 application of, 73–77
 bottomhole assembly for, 69–71, 70f
 bottom-intake configuration, 75–76, 75f
 cable-suspended submersible pumps for,
 79–80, 79f
electric cable for, 71, 72f, 81, 82
 overview of, 2, 67, 68f, 82
 shrouded, 73, 74f
 surface equipment for, 72, 72f
emulsion, 60
eengineers, artificial lift, 15
environmental issues in artificial lift systems, 4, 16
equalizer, 27
ESP. See electric submersible pumps (ESPs).
failure rates
 electric submersible pumps (ESPs), 80
gas lifts, 47, 52
hydraulic pumping, 65
field data, artificial lift systems and, 4
fire hazards. See safety issues.
fishing neck, 56
flowing bottomhole/downhole pressure. See stabilized bottomhole flowing pressure (P_{wf}).
flow line, 11, 12f
fluid column, 21–22
fluid pound, 29, 30f
fluid saturation of the formation, 3
fluids, properties of, 4, 38
foam lift, 2
formation, properties of, 3
formation fracturing, 8
formation pressure, 3, 42
formation temperature, 3
free gas, 11, 29
free-pump installations, 56, 56f
friction, 22
friction loss, 11, 12f, 14, 75, 76
galvanized steel, 71
gas
cost to compress, 47
injecting, 43, 44f, 45, 45f
natural, 42
properties of, 3
gas anchor, 20f, 20

gas-gap drive, 4, 5f
gas lifts
 advantages and disadvantages of, 41, 47
 comparison of to other types, 53
 continuous flow, 42–43, 43f
 intermittent flow, 45–46, 45f
 overview of, 2, 42, 52
gas-lift valves, 43, 44f
gas-liquid ratio (GLR), 3, 51
gas locking, 31–32, 31f, 34
gas-oil ratios, 32, 38, 47
gas separation, 29
gas separator, 32, 69, 70f, 82
gas wells, 48, 76

gear box, 27
gear reducer, 26, 26f
gear reduction units, 26
gears, shock loading and, 29
head, 71
health issues, artificial lift planning and, 16
horsehead bridle and hanger, 26, 27
horsepower for electric submersible pump, 69, 69r, 73, 81, 82
housing, 36
hydrates, 48
hydraulic fluid, 59, 65
hydraulic head, 71
hydraulic jet pumping units, 62–63, 62f, 65
hydraulic pumping
 advantages and disadvantages of, 64, 67
 bottomhole pumping units, 57–58, 57f, 58f, 65
 compared to sucker rod pumping, 64
 hydraulic jet pumping units in, 62–63, 62f, 65
 Kobe pumping units in, 54–56
 overview of, 2, 53, 65
 power-oil pumping systems in, 59–60, 59f
 surface treating and pumping equipment in, 59–60
hydraulic sucker rod pumps, 34, 34f
hydrostatic head, 42
hydrostatic pressure, 11, 12f, 21, 45
impeller, 69, 71
induction type motor, 69
inertia, 22
inflow characteristics of well, 3–4, 6–11
inflow performance relationship (IPR) curve, 3, 9–10, 10f, 14, 17. See also productivity index (PI) curve.
injection air/gas, 42, 43f, 44f, 45, 45f
injection point, 43
injection pressure, 76
insert pumps, 23–24, 39
intermittent-flow gas lift, 45–46, 45f, 50, 51, 52
ARTIFICIAL LIFT

intermittent pumping, 29
internal-combustion engines, 25
IPR, see inflow performance relationship (IPR) curve
jet hydraulic pumps, 64
junction box, 72, 72f
kickoff pressure, 43
kickoff valves, 46
Kobe, Inc., 53
Kobe pumping units, 54–56, 54f
landing nipple, 56
legal restrictions, artificial lift planning and, 4
lightning arrestors, 72
liquids, production of, 9–10
load, 21
loading, 21–22, 27, 48. See also dynamic loading; shock loading.
Monel steel armor, 71
multistage centrifugal pump, 67, 69, 71
multi-stage pump, 24, 32
natural gas, 42
net present value (NPV), 15, 15f
nozzle, 63, 63f
offshore production platforms, 38, 47, 51, 80
oil, properties of, 3
oil and gas separator. See separator.
open-ended tubing, 42, 43f, 44f
open power oil system, 60, 65
operating costs. See cost considerations.
operating personnel, 5, 61
outflow characteristics of well, 3, 11–14
packer, 50, 51
pad plunger, 48
paraffin, 3, 8, 38, 50, 51
parallel free hydraulic pumping assembly, 56f, 58f, 59f
pay zone, 10
PCP. See progressing cavity pumping system (PCP).
permanent production packer, 76, 76f
permeability, 3, 6, 8, 8f
per square inch absolute (psia), 6
PI. See productivity index (PI).
pistons, 32, 65
pitman, 27
plunger, 20f, 21–22, 21f, 32
plunger lifts
advantages and disadvantages of, 51–52
advantages of, 41
comparison of other types, 53
operation of, 48–51, 50f
overview of, 2, 38, 49f, 52
pneumatic sucker rod pumping units, 32–33, 33f
polished rod, 20f, 21–22, 26f, 27, 29. See also rods.
porosity, 3
ports, 43, 44f, 45
positive-displacement pumps, 71
power fluid, 61
power oil, 54, 55f, 60
power-oil pumping systems, 59–60, 59f, 61f, 65
power source
availability for an artificial lift system, 4
for electric submersible pumps, 67, 68f, 81, 82
for Kobe pumping units, 67
for plunger lifts, 51
for pneumatic lifts, 33
for sucker rod units, 25, 27
power surges, protection from, 72
pressure
casing, 29, 48
electric cables and, 71
formation, 3, 42
intake, 63, 63f
natural, in the reservoir, 1, 17, 19
pressure at the wellbore formation. See stabilized bottomhole flowing pressure (Pwf).
power controllers, 51
prime movers, 26, 26f, 27
producing zone, 10, 69, 73, 74f
production rates, 7f, 73, 80, 82
productivity, well. See also downtime.
 adjusting outflow characteristics for, 11, 14
 chamber gas lift and, 46
 deep wells and, 24, 47, 52
 electric submersible pumps and, 73, 76
 expecting changes in, 4
 gas lifts and, 42, 43, 52
 hydraulic pumping and, 55
 intermittent gas lift and, 45
 plunger lifts and, 51
 properly sized equipment for, 29
 pump depth and, 14
 regulations, 4
 stimulating, 1, 4
 sucker rod pumping and, 38
 productivity index (PI)
 considering in planning an artificial lift system, 3, 17
 permeability and, 8, 8f
 using data to determine, 5–6, 5f
 productivity index (PI) curve. See also inflow performance relationship (IPR) curve.
 compared to IPR curve, 9f
 comparison of different drive types, 5f
 determining, 9–10, 10f, 17
 for single-phase liquid flow, 7f
 outflow system and, 14, 14f
 progressing cavity pumping system (PCP), 36, 37f
 protector, for ESP, 69, 82
 psia. See per square inch absolute (psia).
 pump barrel, 20f, 21f, 22, 23, 36
 pump off, 29, 81
 pump pistons, 57
 pumping depth, determining, 14
 pumping rate, 29
 pumping unit, capacity of, 14
 radial flow, 6, 7f
 reciprocal pumping units. See sucker rod pumping unit.
 reciprocating hydraulic pumps, 64
 reciprocating motion, 19, 25, 27
 Recommended Practices (RP), 16
 Reda Pump Company, 67
 reservoir. See also well.
 considering characteristics of, 3
 determining future, 10
 overall performance of, 4–6
 pressure in, 1, 17, 19
 stimulation techniques, 4
 water flooding, 76
 reservoir drive, 3, 4, 5f
 reservoir engineers, 5–6
 reversing valve, 57, 65
 rod reversal, 34, 35
 rods, 19, 21–22, 24. See also polished rod.
 rod string, 21–22, 27, 29
 rotor, 36
 safety issues
 considering in planning an artificial lift system, 4, 16
 fire hazards, 42
 hydraulic pumping and, 64
 using high-pressure gas, 48
 sales line pressure, 33
 salt, 50
 sand, presence of
 artificial lift planning and, 3, 38
 electric submersible pumps (ESPs) and, 67, 81
 hydraulic pumping and, 64, 67
 plunger lifts and, 51
 scale, 8, 38, 50, 51
 separation, hydraulic pumping and, 54–55
 separator, 11, 32, 69, 70f, 82
 separator pressure, 11, 12f, 14
 shallow wells, 43
 shock loading, 29, 30f. See also loading.
 shoe, 79–80
 shroud for ESP assembly, 73, 74f
 silt, 8
 single-cylinder engines, 25
 single-phase flow
 overview of, 6, 7f
 PI curve and, 9, 9f, 10f
 well outflow and, 11, 12f
single-speed electric submersibles, 81
single-stage centrifugal pump, 71
“skin”, 8
solid rod plunger, 48
solids contamination
 electric submersible pumps (ESPs) and, 73, 81
 jet pumps and, 61
 power oil, 60
solution-gas drive, 4, 5f
spool valve, 33
stabilized bottomhole flowing pressure (P_{wf}).
 See also bottomhole pressure.
 in determining IPR, 9
 in determining PI, 6, 7f
 intermittent-flow and, 45
 production rate and, 6, 11
 wireline systems and, 47
stabilized bottomhole shut-in pressure (P), 6, 9, 45, 47. See also bottomhole pressure.
stabilized reservoir pressure. See stabilized bottomhole shut-in pressure (P).
standing valve, 20f, 21–22, 21f, 39, 50, 57
static pressure, 63
stator, 36
steam engines, 25
stimulation techniques, 1, 4
stinger, 76
strokes
 beam pump, 25, 26
 counterbalancing, 27
 extra long, 27
 fluid pound and, 29
 hydraulic pump, 34
 pneumatic pump, 32, 33f
 shock loading, 29, 30f
 sucker rod operating cycle and, 21–22, 23f
 stuffing box, 20f, 26f, 27, 35
sucker rod pumping unit
 advantages and disadvantages of, 38, 39
 beam pumps, 19, 20f, 25–27, 25f, 26f
 cable-wind pump for, 35, 35f
 compared to hydraulic pumping units, 64
 counterbalancing, 27, 28f
 hydraulic pumps for, 34, 34f
 overview of, 2, 2f, 20f
 pneumatic pumps for, 32–33, 33f
 progressing cavity pump for, 36, 37f
 wheel jack pump for, 35, 36f
sucker rod pumps
 fluid pound, 29, 30f
 gas locking, 31–32, 31f
 operation of, 21–23, 23f
 overview of, 19, 21f, 39
 types of, 23–24, 39
sucker rods, 21–22, 21f, 24, 26f, 39. See also rods.
surface pumping unit
 early use of, 25
 electric submersible pumps (ESPs) and, 72, 72f
 hydraulic pumping, 59–60
 overview of, 19
 plunger lifts and, 51
 shock loading and, 29
 types of, 27, 39
surfactants, 48
switchboard for ESP, 72, 72f
tapered strings, 24
temperature limitations, equipment, 71, 81
tensile loads, 80
throat, 63, 63f
transformer bank, 72, 72f
traveling valve, 20f, 21–22, 21f, 31, 57
triplex pumps, 60
tubing
 buildup in, 51
 overview of, 20f, 21–22
 plunger lifts and, 50
 well outflow and, 11, 12f, 14
tubing pumps, 23–24, 39
two-phase flow, 9, 9f, 10f, 13f
velocity, intake, 63, 63f
velocity strings, 48
venting
 electric submersible pumps (ESPs), 69
 in sucker rod pumping units, 29, 32
Kobe pumping units, 54
pneumatic units, 32
viscosity, 3, 11

walking beam, 25, 25f, 26f
water, well outflow and, 9, 14
water cut, 3
water drive, 4, 5f
waterflooding, 76, 78f
well. See also reservoir.
 inflow and outflow characteristics, 3, 6–14, 29
 productivity of, 4, 5f, 6
reservoir performance and, 4–6
wellbore pressure at the formation. See stabilized bottomhole flowing pressure (P_{wf}).
well completion, 6
well completion data, 3
wellhead, 20f, 33, 60, 72f
wheel jack, 35
wheel jack pumping unit, 35, 36f
wireline systems, 47, 51, 56
zones, producing, 10, 69, 73, 74f
To obtain additional training materials, contact:

PETEX
The University of Texas at Austin
PETROLEUM EXTENSION
J.J. Pickle Research Campus
10100 Burnet Road, Bldg. 2
Austin, TX 78758

Telephone: 512-471-5940
or 800-687-4132
FAX: 512-471-9410
or 800-687-7839
E-mail: petex@www.utexas.edu
or visit our Web site: petex.utexas.edu

To obtain information about training courses, contact:

PETEX
HOUSTON TRAINING CENTER
The University of Texas at Austin
4702 N. Sam Houston Parkway West, Suite 800
Houston, TX 77086

Telephone: 281-397-2440
or 800-687-7052
FAX: 281-397-2441
E-mail: htc@www.utexas.edu
or visit our Web site: petex.utexas.edu