PETEX™ WELL SERVICING AND WORKOVER PUBLICATIONS

A Primer of Oilwell Service, Workover, and Completion

Well Servicing and Workover Series

Lesson 1: Introduction to Oilwell Service and Workover
Lesson 2: Petroleum Geology and Reservoirs
Lesson 3: Well Logging Methods
Lesson 4: Well Completion Methods
Lesson 5: Artificial Lift Methods
Lesson 6: Production Rig Equipment
Lesson 7: Well Servicing and Repair
Lesson 8: Well Cleanout and Repair Methods
Lesson 9: Control of Formation Pressure
Lesson 10: Fishing Tools and Techniques
Lesson 11: Well Stimulation Treatments
Lesson 12: Well Service and Workover Profitability
Artificial Lift Methods

Second Edition

By William Lane

originally produced in cooperation with
INTERNATIONAL ASSOCIATION OF DRILLING CONTRACTORS (IADC)
Houston, Texas

published by
PETROLEUM EXTENSION SERVICE
Division of Continuing & Innovative Education
THE UNIVERSITY OF TEXAS AT AUSTIN

2013
Contents

Figures vi
Foreword ix
Preface xi
Acknowledgments xiii
About the Author xv
Units of Measurement xvi
Artificial Lift Overview 1
Types of Lift Systems 2
 Reciprocating Rod Lift 2
 Electric Submersible Pumps 2
 Progressing Cavity Pumps 2
 Conventional Gas Lift 2
 Plunger Lift 3
 Velocity Strings and Foam Lift 3
 Hydraulic Lift 4
Lift System Selection 4
Decision Factors 8
 Reservoir Factors 8
 Well and Flow Line Factors 8
 Inflow Performance Relationship 9
 Well Configuration Factors 10
 Fluid Factors 10
 Environmental and Regulatory Factors 11
 Operator-Specific Discretionary Factors 12
Summary 12
Reciprocating Rod Lift 13
 Typical Applications 15
 Operating Principles 16
 Pump Types 19
 Pump Components 22
 Gas Anchors 25
 Pump Nomenclature 26
 Surface Rod Pumping Units 27
 Conventional Beam Units 28
 Front-Mounted Geometry Crank Counterbalance Units 29
 Phased Crank Counterbalance Units 30
 Beam Balanced Units 30
 Long-Stroke Pumping Units 30
 Low-Profile Pumping Units 32
 Hydraulic Pumping Units 32
 Rod String 33
Contents

- Intermittent Gas Lift 85
 - Typical Applications 85
 - Operating Principles 86
 - Systems Components 86
 - System Design 86
 - Summary 90
- Plunger Lift 91
 - Typical Applications 93
 - Operating Principles 93
 - System Components 96
 - System Design 99
 - Summary 100
- Velocity Strings and Foam Lift 101
 - Typical Applications 102
 - Operating Principles 103
 - System Components 104
 - System Design 105
 - Summary 108
- Hydraulic Lift 109
 - Typical Applications 111
 - System Configurations 112
 - Hydraulic Jet Pumps 116
 - Hydraulic Piston Pumps 118
 - Surface Equipment 120
 - Summary 122
- Production Optimization 123
 - Typical Applications 124
 - System Components 126
 - Sensors 126
 - Well Site Intelligence 127
 - SCADA 128
 - Desktop Intelligence 129
 - Integrated Functionality 130
 - System Design 131
 - Summary 131
- Appendix: Figure Credits 133
- Glossary 139
- Review Questions 151
- Index 157
- Answer Key 165
William Lane has 35 years of experience in the oil and gas industry performing roles in engineering, manufacturing, global product line management, and artificial lift training. He has been directly involved with surface service equipment, completions, compression, artificial lift, and unconventional resources. He has been working with Weatherford International and the former EVL Oil Tools Ltd. for 18 years in various executive positions and is currently serving as the vice president of emerging technologies for Weatherford Artificial Lift Systems Inc.

Lane holds several U.S. patents, and in 2003 was the recipient of a Harts E&P Special Meritorious Award for Engineering Innovation. He holds a B.S. degree in Mechanical Engineering and an M.S. degree in Mechanical Engineering Design, both from the University of Texas at Arlington.
Throughout the world, two systems of measurement dominate: the English system and the metric system. Today, the United States is one of only a few countries that employ the English system.

The English system uses the pound as the unit of weight, the foot as the unit of length, and the gallon as the unit of capacity. In the English system, for example, 1 foot equals 12 inches, 1 yard equals 36 inches, and 1 mile equals 5,280 feet or 1,760 yards.

The metric system uses the gram as the unit of weight, the metre as the unit of length, and the litre as the unit of capacity. In the metric system, 1 metre equals 10 decimetres, 100 centimetres, or 1,000 millimetres. A kilometre equals 1,000 metres. The metric system, unlike the English system, uses a base of 10; thus, it is easy to convert from one unit to another. To convert from one unit to another in the English system, you must memorize or look up the values.

In the late 1970s, the Eleventh General Conference on Weights and Measures described and adopted the Système International (SI) d'Unites. Conference participants based the SI system on the metric system and designed it as an international standard of measurement.

The Well Servicing and Workover Series gives both English and SI units. And because the SI system employs the British spelling of many of the terms, the book follows those spelling rules as well. The unit of length, for example, is metre, not meter. (Note, however, that the unit of weight is gram, not gramme.)

To aid U.S. readers in making and understanding the conversion system, we include the table on the next page.
<table>
<thead>
<tr>
<th>Quantity or Property</th>
<th>English Units</th>
<th>Multiply English Units By</th>
<th>To Obtain These SI Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length, depth, or height</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inches (in.)</td>
<td>25.4</td>
<td>millimetres (mm)</td>
<td></td>
</tr>
<tr>
<td>feet (ft)</td>
<td>0.3048</td>
<td>metres (m)</td>
<td></td>
</tr>
<tr>
<td>yards (yd)</td>
<td>0.9144</td>
<td>metres (m)</td>
<td></td>
</tr>
<tr>
<td>miles (mi)</td>
<td>1609.344</td>
<td>metres (m)</td>
<td></td>
</tr>
<tr>
<td>Hole and pipe diameters, bit size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inches (in.)</td>
<td>25.4</td>
<td>millimetres (mm)</td>
<td></td>
</tr>
<tr>
<td>Drilling rate</td>
<td>feet per hour (ft/h)</td>
<td>0.3048</td>
<td>metres per hour (m/h)</td>
</tr>
<tr>
<td>Weight on bit</td>
<td>pounds (lb)</td>
<td>0.445</td>
<td>decanewtons (dN)</td>
</tr>
<tr>
<td>Nozzle size</td>
<td>32nds of an inch</td>
<td>0.8</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td>barrells (bbl)</td>
<td>0.159</td>
<td>cubic metres (m³)</td>
<td></td>
</tr>
<tr>
<td>gallons per stroke (gal/stroke)</td>
<td>0.00379</td>
<td>cubic metres per stroke (m³/stroke)</td>
<td></td>
</tr>
<tr>
<td>ounces (oz)</td>
<td>29.57</td>
<td>millilitres (mL)</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>cubic inches (in.³)</td>
<td>16.387</td>
<td>cubic centimetres (cm³)</td>
</tr>
<tr>
<td>cubic feet (ft³)</td>
<td>28.3169</td>
<td>litres (L)</td>
<td></td>
</tr>
<tr>
<td>quarts (qt)</td>
<td>0.9464</td>
<td>litres (L)</td>
<td></td>
</tr>
<tr>
<td>gallons (gal)</td>
<td>3.7854</td>
<td>litres (L)</td>
<td></td>
</tr>
<tr>
<td>pounds per barrel (lb/bbl)</td>
<td>2.205</td>
<td>kilogrammes per cubic metre (kg/m³)</td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td>pounds per square inch (psi)</td>
<td>6.895</td>
<td>kilopascals (kPa)</td>
</tr>
<tr>
<td>Temperature</td>
<td>degrees Fahrenheit (°F)</td>
<td>°F - 32</td>
<td>degrees Celsius (°C)</td>
</tr>
<tr>
<td>degrees Fahrenheit (°F)</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ounces (oz)</td>
<td>28.35</td>
<td>grams (g)</td>
<td></td>
</tr>
<tr>
<td>pounds (lb)</td>
<td>453.59</td>
<td>grams (g)</td>
<td></td>
</tr>
<tr>
<td>tonnes (tn)</td>
<td>0.9072</td>
<td>kilogrammes (kg)</td>
<td></td>
</tr>
<tr>
<td>Mud weight</td>
<td>pounds per gallon (ppg)</td>
<td>119.82</td>
<td>kilogrammes per cubic metre (kg/m³)</td>
</tr>
<tr>
<td>pounds per cubic foot (lb/ft³)</td>
<td>16.0</td>
<td>kilogrammes per cubic metre (kg/m³)</td>
<td></td>
</tr>
<tr>
<td>Pressure gradient</td>
<td>pounds per square inch per foot (psi/ft)</td>
<td>22.621</td>
<td>kilopascals per metre (kPa/m)</td>
</tr>
<tr>
<td>Funnel viscosity</td>
<td>seconds per quart (s/qt)</td>
<td>1.057</td>
<td>seconds per litre (s/L)</td>
</tr>
<tr>
<td>Yield point</td>
<td>pounds per 100 square feet (lb/100 ft²)</td>
<td>0.48</td>
<td>pascals (Pa)</td>
</tr>
<tr>
<td>Gel strength</td>
<td>pounds per 100 square feet (lb/100 ft²)</td>
<td>0.48</td>
<td>pascals (Pa)</td>
</tr>
<tr>
<td>Filter cake thickness</td>
<td>32nds of an inch</td>
<td>0.8</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td>Power</td>
<td>horsepower (hp)</td>
<td>0.75</td>
<td>kilowatts (kW)</td>
</tr>
<tr>
<td>Area</td>
<td>square inches (in.²)</td>
<td>6.45</td>
<td>square centimetres (cm²)</td>
</tr>
<tr>
<td>square feet (ft²)</td>
<td>0.0929</td>
<td>square metres (m²)</td>
<td></td>
</tr>
<tr>
<td>square yards (yd²)</td>
<td>0.8361</td>
<td>square metres (m²)</td>
<td></td>
</tr>
<tr>
<td>square miles (mi²)</td>
<td>2.59</td>
<td>square kilometres (km²)</td>
<td></td>
</tr>
<tr>
<td>acre (ac)</td>
<td>0.40</td>
<td>hectare (ha)</td>
<td></td>
</tr>
<tr>
<td>Drilling line wear</td>
<td>ton-miles (tn•mi)</td>
<td>14.317</td>
<td>megajoules (MJ)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.459</td>
<td>tonne-kilometres (t•km)</td>
</tr>
<tr>
<td>Torque</td>
<td>foot-pounds (ft•lb)</td>
<td>1.3558</td>
<td>newton metres (N•m)</td>
</tr>
</tbody>
</table>
Artificial Lift Overview

In this chapter:

- How artificial-lift systems produce fluids
- Current lift technologies used on land and offshore
- Factors to consider when selecting a lift system
- Environmental and operator-discretionary factors

Ideally, a hydrocarbon-bearing reservoir should contain enough natural pressure to enable fluids to flow to the surface for several years without requiring external energy. Over time, however, energy in the formation will decline to the point that pressure and/or flow velocity will no longer be adequate to move fluids to the surface. When a well reaches this point in its lifecycle, fluids must be produced (or lifted) to the surface through artificial means.

Notable exceptions include wells completed in prolific water drive reservoirs where wells continue to flow water under natural reservoir energy after hydrocarbon production has ceased. Likewise, large gas-cap reservoirs can contain sufficient energy to produce much of the recoverable hydrocarbons without artificial lift. However, more often, wells require artificial lift at some point in their economic life.

Even gas wells typically require some sort of deliquification system to remove water. Water accumulating in the wellbore creates a back-pressure that limits gas inflow from the reservoir, so the water must continually or periodically be removed to allow for the free flow of gas.
Reciprocating Rod Lift

In this chapter:
- Typical applications of reciprocating rod systems
- Operating principles of a sucker rod pump
- Rod pump system design and components
- Types of surface rod pumping units
- Factors to consider when selecting and using rod string

The history of reciprocating rod lift is closely tied to the early oilwells that were established in 1859 by Edwin Drake in the small, rural community of Titusville, Pennsylvania. Commonly referred to as the Drake well, this earliest of drilling sites forever shaped industry and trade while advancing human mobility. Around 300 to 400 gallons (about 1,135 to 1,514 litres) were reportedly lifted from the site each day; however, the drilling process was expensive, tedious, and extremely dangerous.

Within ten years of the Drake well, conventional rod pumping was becoming increasingly popular. Early rod-pumping systems consisted of a standard cable tool drilling rig, placed in such a way that the walking beam could be used to operate the pump. Prior, rod-activated pumps had been used to produce brine. Similar to the pump illustrated in figure 1, they consisted primarily of a cylinder made up in the tubing string, a standing valve seated in the tubing string, a plunger, and traveling valve. It is likely that flapper valves were used rather than ball valves, which are depicted in the figure. Originally, the plunger was reciprocated in the cylinder by means of wooden sucker rods with wrought-iron end fittings for connections.
Electric Submersible Pumps

In this chapter:

• Typical applications of electric submersible pumps
• Operating principles for high volumes of fluids
• Key system components and how they function
• Basic ESP system design factors to consider

In 1916, Armias Arutunoff developed the first cylindrical multistage electric submersible pump (ESP) for dewatering mines and ships. He formed the Russian Electrical Dynamo of Arutunoff Company (REDA) and applied the technology to oilwells, first in Russia and then in Germany. Mr. Arutunoff immigrated to the United States and installed the first ESP in the Western Hemisphere in a Phillips Petroleum well in Kansas in 1928. By 1938, approximately 2% of artificially lifted oil in the United States was lifted by REDA pumps.

Today, ESPs have become the preferred lift technology for many pumping applications, from shallow dewatering of mines to high-volume offshore oil production. High-temperature systems have been developed to allow ESPs to pump in applications traditionally serviced only by rod pumping systems. Special gas-handling features have made it possible to use ESPs in some gaseous well applications.

As a result, more capital is spent on procurement of ESP systems today than all other lift technologies combined.
Air lifting of water with a small amount of oil was first known to be used in the United States as early as 1846, but compressed air was reportedly used to lift water from wells in Germany as early as the eighteenth century. These systems operated initially in a very simple manner by induction of air to the bottom of the tubing and out into the casing. Aeration of the fluid in the casing-tubing annulus decreased the weight of the mixture to the extent that fluid would rise to the surface and flow out of the well. The process was sometimes reversed by injecting down the casing and producing through the tubing.
Plunger lift is a method of lifting fluid by produced gas to drive a free-piston (plunger) from the lower end of the tubing string to the surface. This is done to remove accumulated fluid from the tubing string. Plunger lift is similar to intermittent gas lift in that it uses stored gas energy from the annulus or wellbore to periodically lift slugs of liquid, rather than lifting the entire column of fluid all at once.

The plunger lift overcomes two of the efficiency challenges of intermittent gas lift. First, the plunger acts as a mechanical interface seal between the slug of liquid that is lifted and the gas that moves the plunger and liquid. Thus, fluid fallback is greatly reduced, resulting in improved lifting efficiency. Second, the fluid is lifted using the energy of the formation rather than requiring pressurized injection gas energy from the surface. The result is the most cost efficient lift technology for low-volume applications (fig. 61).
In this chapter:

- Typical applications of foam-lift technology
- Operating principles and the role of critical velocity
- Using surfactants to lower surface tension
- How system components work to extend well life

In a flowing gas well, liquids entrain in the gas and accumulate at the bottom of the well. This increases the bottomhole pressure (BHP) in the well and inhibits gas inflow. Also, accumulated liquids displace gas in the near-wellbore formation, reducing gas permeability and hindering gas migration to the wellbore. If flow velocities are sufficiently high, the flowing gas will continuously blow liquids out of the well to keep the well unloaded, or clear of liquids. However, at lower gas velocities liquids accumulate in the wellbore, slowing gas inflow. Eventually the entrained and accumulating liquids can increase BHP to the point that gas production ceases.

The term liquid loading refers to the accumulation of liquids in a wellbore that inhibits gas inflow. One way to prevent or relieve liquid loading is to enhance gas velocities; another way is to cause the liquid to foam so that it can be more easily displaced.

Flow velocities can be increased by reducing the cross-sectional flow area of the gas stream. This can be accomplished by flowing the well fluids through reduced diameter tubing (velocity string) or through the annulus around an inserted dead string of tubing. Gas flow velocities can also be increased by injecting gas to comingle with produced gas.
Hydraulic Lift

In this chapter:

- Typical applications of hydraulic lift
- Configurations of hydraulic-lift systems
- Principles of hydraulic jet and piston pumps
- Surface equipment required for hydraulic lift

In 1932, C.J. Coberly installed the first hydraulic piston pump in Inglewood, California as a solution to pumping oil without using a sucker rod string. Later, Coberly formed Kobe, Inc., and the company was the first to successfully use a hydraulic jet pump to produce an oilwell. Since then, jet pumps have been used to pump up to 35,000 barrels of well fluids per day. Hydraulic pumping represents one of the most flexible forms of artificial lift; it can often successfully produce wells in which other lift technologies have failed (fig. 71).

Hydraulic-pumping systems consist of four basic parts:

- Power-fluid conditioning and supply
- Surface power unit and hydraulic pump
- Piping to transfer the high-pressure power fluid to the subsurface pump
- Subsurface jet pump or piston pump (fig. 72)

The fluid-conditioning system cleans and prepares the power fluid, which is typically a produced well fluid, such as water or oil.

Figure 71. Hydraulic-lift system
Production Optimization

In this chapter:

- Maximizing production throughout the life of a well
- Addressing factors that can hinder production
- How systems collect and transmit well data
- Key elements of a production-optimization system

The previous sections of this book all deal with selecting, designing, and effectively applying lift technologies based on assumptions about how the reservoir will deliver fluids. In reality, production always varies somewhat from what was expected because well conditions, inflow volumes, and fluid phases change over time.

The artificial-lift system should be adjusted as needed to match the inflow rates from the reservoir. As fluid production declines, the lift system pumping rate must be similarly reduced or the well might become pumped dry of fluids, causing damage to the lift systems and potentially to the reservoir. In other situations, improved reservoir management techniques can increase reservoir deliverability, but production might then be constrained by lift system performance. Until the lift system is adjusted to produce at the new deliverability rates, the lift system can cause an undetected bottleneck. Damage to lift systems and lost potential production from suboptimum lift performance are easily prevented but are often overlooked by manual surveillance practices.
Index

abrasive fluids, 24, 61, 71, 96
aeration, 73, 76–78, 85
air lift, 73–74
aromatic gases, 6, 10, 61, 68, 71
artificial lift
 about, 1
 decision factors, 8–12
 lift system selection, 4–5
 technology comparison, 6–7
 types of lift systems, 2–4
artificial-lift controllers, 127
Arutunoff, Armias, 43
asphaltic oils, 11
back-pressure, 1, 4, 6–7, 9, 41, 55, 68–69, 80, 82, 84–85, 93
ball-and-seat check valves, 24
ball valves, 13
beam balanced units, 30, 42
blowout preventer (BOP), 70
bottomhole pressure (BHP), 3, 9, 84, 87, 94, 101
bridging, 69
brine, 13
bumper spring, 93–94, 98
capillary systems, 104–105
capillary tubing strings, 104–105, 108
centipoise (cp), 46, 61
centrifugal pump operation, schematic of, 47
choke valves, 82
clearances, 22, 67
Coberly, C.J., 109
coiled tubing, 56, 110–111, 114
coiled tubing jet pump, 115
compressibility, 9–10, 52, 106
compression pumps, 49
continuous gas lift
 about, 2–3, 75
 and natural flow, 76–77
 equipment selection, 85
 operating principles, 76–80
 system components, 80–82
 system design, 83–85
 typical applications, 6, 75
continuous rod, 2, 16, 36, 64–65
continuous rod installation, 37
conventional beam (pumping) units, 27–28, 42
conventional gas lift. See continuous gas lift, gas lift, and intermittent gas lift.
conventional-tubing (fixed pump) installations, 112, 114
corrosion, 7, 41, 66, 71, 104
counterbalance weights, 28
counterweights, 29
critical gas rate, 106
cycle rate, 88
dead string, 101, 107
decision factors, lift system selection
 environmental and regulatory factors, 5, 11
 fluid factors, 5, 10–11
 operator-specific discretionary factors, 5, 12
 reservoir factors, 5, 8
 well and flow line factors, 5, 8–10
decline curve, 9, 32, 99, 124
ARTIFICIAL LIFT METHODS

deliquification, 1
deliverability rates, 123
desktop intelligence, 129
deviated wells
capillary tubing, 105
continuous gas lift, 75
continuous rods, 36, 64
conventional rod-driven systems, 10
electric submersible progressing cavity pumps (ESPCPs), 62, 71
electric submersible pumps (ESPs), 6, 10, 44–45, 56
front-mounted geometry crank
counterbalance units, 29
gas lift, 90
heavy-wall capillary tubing for, 105
hydraulic lift, 7, 111
hydraulic pumps, 7, 10
intermittent gas lift, 6
jointed sucker rods, 16
plunger lift, 7
progressing cavity pumps (PC pumps or PCPs), 71
reciprocating rod lift, 42
rod guides, 38
static gas separators in, 50
tubing wear, 38
velocity strings and foam lift, 105
well configuration factors, 10
dewatering
electric submersible pumps (ESPs), 6, 43, 45
foam lift, 7, 101–102
gas wells, 85, 94, 102, 114
hydraulic lift, 7
intermittent gas lift, 85
jet pumps, 117
plunger lift, 7, 94
progressing cavity pumps (PC pumps or PCPs), 6, 61
reciprocating rod lift, 6
diffusers, 46, 48
diluents, 46, 66
double valves, 24
Drake, Edwin, 13
driveheads, 2, 59, 62, 64–66, 69–70

elastomeric stator, 66
elastomers
exposure to CO₂ and aromatic gases, 8, 10, 61
flexing frequency, 62
jet pumps, 117
PCP elastomers, 11
progressing cavity pumps (PC pumps or PCPs), 57, 61, 66–69
electric submersible progressing cavity pumps (ESPCPs)
about, 2, 60
deviated wells, 62, 71
offshore wells, 62, 71
electric submersible pumps (ESPs). See also system components of electric submersible pumps and system design of electric submersible pumps.
about, 2, 43
advantages and challenges, 6
coiled-tubing deployed systems, 56
efficiency losses, 52
efficiency versus speed, 45
for high-volume wells, 9, 43–44
for offshore wells, 43
gas in, 46
horizontal wells, 44–45
in deviated wells 6, 10, 44–45, 56
operating principles, 46–47
pump pressure capacity, 48
recirculation system, 55
system components, 48–54
system design, 55–56
typical applications 6, 44–46
versus gas lift, 45
enhanced oil recovery (EOR), 8
environmental and regulatory factors, 5, 11
explosive decompression, 61, 68
fatigue failure, 33, 39
fatigue resistance, 34−35, 39
fiber-optic cable, 127
fixed-insert conventional configurations, 114
flapper valves, 13
flow friction, excessive gas injection, 88
flow-line pressure, 6−7, 10
fluid factors, 5, 10−11
fluid fallback, 63–64, 86, 91, 93, 96
foam lift. See velocity strings and foam lift.
formation gas, 3, 52, 55, 75, 77, 88, 90, 93, 113–115
free gas, 6–8
free-pump casing return, 112
free-pump parallel return systems, 113
front-mounted geometry crank counterbalance units, 29, 42
gas anchors, 25, 40
gas-cap reservoirs, 1
gas drive wells, 8
gas engine-driven drivehead for a PC pump, 65
gas flow velocities, 3, 101–103, 105
gas injection, 3, 74, 76, 78, 83, 85–90, 105, 117
gas interference, 10, 24
gas lift. See also continuous gas lift and intermittent gas lift.
about, 2–3, 73–74
advantages and challenges, 6
configurations, 78, 84, 90
deviated wells, 90
efficiency, 75, 77, 83–84, 90
origin of, 74
perforation for, 83
single-point, 80
system deliverability curve, 89
vertical wells, 75
gas-lift mandrel application, 115
gas-lift mandrels, 81, 86, 115
gas-lift running tools, 81–82
gas-lift valves
bellows, 74, 80
bottom, 77–79, 90
configuration of, 80–81, 84
design, 80
development of, 74
multiple, 78–79
paraffin, 11
gas-liquid ratio (GLR), 7, 10, 75, 85, 94, 100, 112
gas lock, 10, 16, 24, 46, 48, 52, 61
gas separation, 40, 46, 50
gas separator process, 25
gas separators, 25, 50
gas wells
dewatering, 1, 85, 94, 102, 114
deviated wells, 90
drivehead, 65
deviated wells, 90
efficiency, 75, 77, 83–84, 90
gas interference, 10, 24
gas lift. See also continuous gas lift and intermittent gas lift.
about, 2–3, 73–74
advantages and challenges, 6
configurations, 78, 84, 90
deviated wells, 90
efficiency, 75, 77, 83–84, 90
origin of, 74
perforation for, 83
single-point, 80
system deliverability curve, 89
vertical wells, 75
gas-lift mandrel application, 115
gas-lift mandrels, 81, 86, 115
gas-lift running tools, 81–82
gas-lift valves
bellows, 74, 80
bottom, 77–79, 90
gas-lift mandrel application, 115
gas-lift mandrels, 81, 86, 115
gas-lift running tools, 81–82
gas-lift valves
bellows, 74, 80
bottom, 77–79, 90
configuration of, 80–81, 84
design, 80
development of, 74
multiple, 78–79
paraffin, 11
gas-liquid ratio (GLR), 7, 10, 75, 85, 94, 100, 112
gas lock, 10, 16, 24, 46, 48, 52, 61
gas separation, 40, 46, 50
gas separator process, 25
gas separators, 25, 50
gas wells
dewatering, 1, 85, 94, 102, 114
deviated wells, 90
drivehead, 65
deviated wells, 90
efficiency, 75, 77, 83–84, 90
gas interference, 10, 24
gas lift. See also continuous gas lift and intermittent gas lift.
about, 2–3, 73–74
advantages and challenges, 6
configurations, 78, 84, 90
deviated wells, 90
efficiency, 75, 77, 83–84, 90
origin of, 74
perforation for, 83
single-point, 80
system deliverability curve, 89
vertical wells, 75
gas-lift mandrel application, 115
gas-lift mandrels, 81, 86, 115
gas-lift running tools, 81–82
gas-lift valves
bellows, 74, 80
bottom, 77–79, 90
configuration of, 80–81, 84
design, 80
development of, 74
multiple, 78–79
paraffin, 11
gas-liquid ratio (GLR), 7, 10, 75, 85, 94, 100, 112
gas lock, 10, 16, 24, 46, 48, 52, 61
gas separation, 40, 46, 50
gas separator process, 25
gas separators, 25, 50
gas wells
dewatering, 1, 85, 94, 102, 114
deviated wells, 90
drivehead, 65
deviated wells, 90
efficiency, 75, 77, 83–84, 90
gas interference, 10, 24
horizontal wells
electric submersible pumps (ESPs), 44–45
velocities strings and foam lift, 102
hydraulic jet pumps
about, 4
energy consumption, 117
operation, 110, 116–117
origin of, 109
schematic, 116
typical applications, 7, 111
with large-volume wells, 9
hydraulic lift. See also hydraulic jet pumps and hydraulic piston pumps.
about, 4, 109–111
advantages and challenges, 7
cost and power requirements, 112
parts of, 109
pressure capacity, 119
surface equipment, 120–122
surface infrastructure, 111
system configurations, 112–115
typical applications, 7, 111–112
hydraulic piston pumps
about, 4, 110, 118–119
engine-type section, 118, 122
fluid supply plant of, 121
origin of, 109
pressure capacity, 119
self-contained surface unit of, 120
sensitivity to scale, 118–119
typical applications, 7
hydraulic pumping units, 32, 42
hydraulic pumps, 10, 111, 115, 122
hydrocarbon foams, 105
hydrostatic pressure (HP), 3–4, 76, 78

impellers, 46, 48
incremental pressure capacity, 68
inflow performance relationship (IPR), 9
inflow rates, 123
injection cycle frequency, 86–87
injection period (duration), 87–89
injection points, 78
injection pressure, 76, 78, 80–82, 87–88, 90
insert pumps, reciprocating rod lift, 19–21, 42
insert pumps, progressing cavity pumps (PC pumps or PCPs), 64
insert-style pumps, 111
integrated functionality, 140
interference, progressing cavity pumps (PC pumps or PCPs), 67
intermittent gas lift
about, 2–3, 85
closed configuration, 87
operating principles, 86
system components, 86
system design, 86–89
typical applications, 6, 85
internal capillary-injection string, 107

jet pumps. See hydraulic jet pumps.

King valve, 74

labyrinth seals, 50
leasing, 12
lift rating, 68
lift systems, categories of, 12
lift system selection
decision factors, 8–12
eliminating technologies, 5
identifying technologies, 4–5
target production conditions, 4–5, 12
technology comparison, 6–7

lift system types
electric submersible pump (ESPs), 2
gas lift, 2–3
hydraulic lift, 4
plunger lift, 3
progressing cavity pumps (PC pumps or PCPs), 2
reciprocating rod lift, 2
velocity strings and foam lift, 3

line losses, 52
liquid loading, 95, 99, 101
long-stroke pumping units, 30–31, 42
low-profile pumping units, 32, 42
low-volume applications, 91, 100

mandrels, 3, 22, 54, 115. See also gas-lift mandrels.
McGowen, Harold, 74
Modified Goodman Diagram, 41
Moineau, René, 57
Moore, Howard, 74
multistage centrifugal pump, 2, 46, 56

natural flow, 76–77
natural gas, 74
no-turn tools, 66

offshore wells
electric submersible progressing cavity pumps (ESPCPs), 62, 71
electric submersible pumps (ESPs), 10, 43–44, 56
Index

gas lift, 10, 75, 90
progressing cavity pumps (PC pumps or PCPs), 61
rod string, 16
subsurface safety valves (SSSVs), 10, 16, 44, 61, 75
operator-specific discretionary factors, 5, 12
overtorque, 36
overtravel, 19
oxidation, 74

packer, 55, 76, 79−80, 83−84, 86−87, 99, 104, 112−115
paraffin, 7, 11, 93, 104
particulate matter
 abrasive fluids with, 61, 71
double valves, 24
electric submersible pumps (ESPs), 45−46, 48−49, 55−56
gas lift, 75, 90
hydraulic jet pumps, 116–117
hydraulic piston pumps, 112, 118−119
pad plungers, 96−97
progressing cavity pumps (PC pumps or PCPs), tolerance to, 6, 61, 71
reciprocating rod lift, tolerance to, 16
sand-tolerant pumps, 16
traveling barrel pumps, 21−22
viscous fluids and, 61
PCPs. See progressing cavity pumps.
PC pumps. See progressing cavity pumps.
perforations, for gas-lift, 77, 83
permanent magnet motors, 49
permeable formations, 8
phased crank counterbalance units, 30, 42
piston, reciprocating rod lift, 2
piston pumps. See hydraulic piston pumps.
plunger lift
 about, 3, 91−92
 advantages and challenges, 7
 controller, 98
efficiency, 91, 93, 96
in conjunction with intermittent gas lift, 93, 100
lubricator, 3, 93−95, 98
operating principles, 93−95
progressive (staged), 95
screening criteria, 99
staged, 95
subsurface assembly, 98
surface assembly, 94
system components, 96−99
system design, 99
typical applications, 93
unloading cycles, 93−94
plungers
 about, 3
 brush, 96
 continuous flow, 97
 conventional, 96
cup, 22−23
metallic, 22
pad, 96, 99
soft-packed, 22
solid ring (spiral), 96
polished rod, 28, 36, 70
positive-displacement pumps, 2, 57, 59
power fluid, 4, 11, 109−122
preloading, 39
produced gases, 10
produced water, 11, 120
production optimization
 about, 123−124
desktop intelligence, 129
integrated functionality, 130
Tier I, II, and III management, 125
typical applications, 124−125
SCADA (Supervisory Control and Data Acquisition), 124, 127−128
sensors, 126, 128
system components, 126−130
system design, 131
well-site intelligence, 127
productivity index (PI), 8, 11, 75, 83−87
programmable logic controllers (PLCs), 128−129
progressing cavity pumps (PC pumps or PCPs).
See also electric submersible progressing cavity pumps (ESPCPs).
about, 2, 57−60
advantages and challenges, 6
composite flow tee, 70
electric drivehead, 65
gas engine-driven drivehead, 65
insert pump, 64
installation and operating considerations, 68−70
multi-lobe configuration, 62
1:2 pump configurations, 62
operating efficiency, 57, 61
operating principles, 62−64, 71
operating speed, 66−67
pump displacement, 66, 69
pump efficiency versus pump lift, 67
rotor and stator pitches, 63
rotor in stator, 62
schematic of, 62
single-lobe configuration, 62
stator configuration, 63
subsurface pump assembly, 69
surface drivehead, 2, 59, 62, 70−71
system components, 64−66
system design, 66−69
torque anchor, 66
2:3 pump configurations, 62
typical applications, 6, 61−62
viscous sandy fluid, 11
volumetric efficiency, 64, 66−67
pump barrels, 16, 18−19, 22, 24
pumping rig, early version, 15
pump-off conditions, 11, 127
pump stages
mixed flow, 48
radial flow, 48
rate controller, 81−82
reciprocating motion, 27, 42, 118, 122
reciprocating pump, 4
reciprocating rod lift. See also surface rod pumping units.
about, 2, 13−14
advantages and challenges, 6
efficiency losses, 41
hard cups versus soft cups, 23
operating principles, 16−19
pump components, 22−25
pump displacement, 25
pumping cycle, for conventional tubing pump, 18
pump longevity, 24
pump nomenclature, 26
pump types, 19−22
system power, 41
target production rate, 40
typical applications, 6, 15−16
vertical wells, 6
reciprocating rod pump arrangement, 14
reciprocating rod pumping unit, 14
recirculation system, 55
remote terminal units (RTUs), 127−128
reservoir factors, 5, 8
revolutions per minute (rpm), 49, 64, 66
rod-driven pump systems. See progressing cavity pumps (PC pumps or PCPs).
rod handling, 16, 38−39
rod make up, 39
rod size, 35
rod string
about, 33
running tools, 81−82
sand, 6, 11, 23−24, 42, 57, 61, 69, 75, 85, 90, 111
sand-tolerant pumps, 16
sandy fluids, 11, 23, 57, 69
SCADA. See Supervisory Control and Data Acquisition (SCADA).
scale
and lift systems, 11
chemicals to control, 11, 104
<table>
<thead>
<tr>
<th>Term</th>
<th>Page References</th>
</tr>
</thead>
<tbody>
<tr>
<td>double valves</td>
<td>24</td>
</tr>
<tr>
<td>hydraulic piston pumps, sensitivity to</td>
<td>118–119</td>
</tr>
<tr>
<td>plunger lift</td>
<td>93</td>
</tr>
<tr>
<td>prevention</td>
<td>11</td>
</tr>
<tr>
<td>removal of</td>
<td>34, 93</td>
</tr>
<tr>
<td>sucker rods</td>
<td>34</td>
</tr>
<tr>
<td>screw pumps</td>
<td>2</td>
</tr>
<tr>
<td>sensor systems</td>
<td>126</td>
</tr>
<tr>
<td>slippage</td>
<td>22, 48, 63–64, 67–68</td>
</tr>
<tr>
<td>soap sticks</td>
<td>104</td>
</tr>
<tr>
<td>soft cups versus hard cups</td>
<td>23</td>
</tr>
<tr>
<td>solution drive wells</td>
<td>8</td>
</tr>
<tr>
<td>standing check valve, gas lift</td>
<td>87</td>
</tr>
<tr>
<td>standing check valve, plunger lift</td>
<td>98</td>
</tr>
<tr>
<td>standing valve</td>
<td></td>
</tr>
<tr>
<td>electric submersible pumps (ESPs)</td>
<td>48, 53</td>
</tr>
<tr>
<td>gas lift</td>
<td>84, 87</td>
</tr>
<tr>
<td>hydraulic lift</td>
<td>112</td>
</tr>
<tr>
<td>plunger lift</td>
<td>93–94</td>
</tr>
<tr>
<td>reciprocating rod lift</td>
<td>13–14, 16–19, 21–22, 24, 42</td>
</tr>
<tr>
<td>static gas separators</td>
<td>50</td>
</tr>
<tr>
<td>static level</td>
<td>41, 76, 86</td>
</tr>
<tr>
<td>static pressure</td>
<td>93</td>
</tr>
<tr>
<td>stationary barrel bottom anchor pump</td>
<td>22</td>
</tr>
<tr>
<td>stationary barrel top anchor pump</td>
<td>21</td>
</tr>
<tr>
<td>stick-slip</td>
<td>70</td>
</tr>
<tr>
<td>straight string</td>
<td>41</td>
</tr>
<tr>
<td>subsurface flowmeter</td>
<td>126</td>
</tr>
<tr>
<td>subsurface pumps</td>
<td></td>
</tr>
<tr>
<td>API nomenclature</td>
<td>26</td>
</tr>
<tr>
<td>dewatering</td>
<td>102</td>
</tr>
<tr>
<td>electric submersible pumps (ESPs)</td>
<td>46–47</td>
</tr>
<tr>
<td>hydraulic pumps</td>
<td>4, 10</td>
</tr>
<tr>
<td>progressing cavity pumps (PC pumps or PCPs)</td>
<td>69</td>
</tr>
<tr>
<td>rod pumping system design</td>
<td>2, 40</td>
</tr>
<tr>
<td>rod string</td>
<td>33, 36</td>
</tr>
<tr>
<td>subsurface rod pump</td>
<td>17, 27</td>
</tr>
<tr>
<td>subsurface safety valves (SSSVs)</td>
<td>10, 16, 44, 61</td>
</tr>
<tr>
<td>sucker rod guides</td>
<td>38</td>
</tr>
<tr>
<td>sucker rod pumping</td>
<td>2. See also reciprocating rod lift.</td>
</tr>
<tr>
<td>sucker rods</td>
<td></td>
</tr>
<tr>
<td>about</td>
<td>2</td>
</tr>
<tr>
<td>API sucker rods</td>
<td>34–35</td>
</tr>
<tr>
<td>connections</td>
<td>33, 35, 64</td>
</tr>
<tr>
<td>continuous rods</td>
<td>36</td>
</tr>
<tr>
<td>fiberglass</td>
<td>36</td>
</tr>
<tr>
<td>handling</td>
<td>38</td>
</tr>
<tr>
<td>hollow</td>
<td>36–37</td>
</tr>
<tr>
<td>non-API connections</td>
<td>35</td>
</tr>
<tr>
<td>non-API sucker rods</td>
<td>35</td>
</tr>
<tr>
<td>tapered</td>
<td>35</td>
</tr>
<tr>
<td>Supervisory Control and Data Acquisition (SCADA)</td>
<td>53, 124, 127–128</td>
</tr>
<tr>
<td>surface controller</td>
<td>93</td>
</tr>
<tr>
<td>surface drivehead</td>
<td>2, 59, 62, 70–71</td>
</tr>
<tr>
<td>surface lubricator</td>
<td>93, 98</td>
</tr>
<tr>
<td>surface rod pumping units</td>
<td>27</td>
</tr>
<tr>
<td>about</td>
<td></td>
</tr>
<tr>
<td>beam balanced units</td>
<td>30, 42</td>
</tr>
<tr>
<td>classification of</td>
<td>27, 42</td>
</tr>
<tr>
<td>conventional beam (pumping) units</td>
<td>27–28, 42</td>
</tr>
<tr>
<td>cost associated with</td>
<td>27</td>
</tr>
<tr>
<td>front-mounted geometry crank counter</td>
<td></td>
</tr>
<tr>
<td>balance units</td>
<td>29, 42</td>
</tr>
<tr>
<td>hydraulic pumping units</td>
<td>32, 42</td>
</tr>
<tr>
<td>long-stroke pumping units</td>
<td>30–31, 42</td>
</tr>
<tr>
<td>low-profile pumping units</td>
<td>32, 42</td>
</tr>
<tr>
<td>phased crank counterbalance units</td>
<td>30, 42</td>
</tr>
<tr>
<td>surface tension</td>
<td>3, 9, 101–103, 106, 108</td>
</tr>
<tr>
<td>system components of electric submersible pumps (ESPs)</td>
<td></td>
</tr>
<tr>
<td>electric controls</td>
<td>53</td>
</tr>
<tr>
<td>intake or gas separator</td>
<td>46, 48, 50, 56</td>
</tr>
<tr>
<td>motor</td>
<td>2, 46, 48–50, 53, 55, 56</td>
</tr>
<tr>
<td>motor seal section</td>
<td>50–51</td>
</tr>
<tr>
<td>power cable</td>
<td>48, 52–53</td>
</tr>
<tr>
<td>pump assembly</td>
<td>48, 52, 56</td>
</tr>
<tr>
<td>standing valve</td>
<td>48, 53</td>
</tr>
<tr>
<td>subsurface pump assembly</td>
<td>46, 56</td>
</tr>
<tr>
<td>wellhead</td>
<td>53–54</td>
</tr>
</tbody>
</table>
ARTIFICIAL LIFT METHODS

system design of electric submersible pumps (ESPs)
bottom intake systems, 55
coiled-tubing deployed systems, 56
shrouded systems, 55
tensile strength, 34
tensile stress, 33
Tier I systems, 124−125, 131
Tier II systems, 124−125, 127, 131
Tier III systems, 124−125, 127, 131
torque, 2, 29, 46, 61, 66, 69−70, 127
torque anchor, 66
traveling barrel bottom anchor pump, 22
traveling valve, 13−14, 16−19, 21−22, 24, 42
tubing pumps, 16, 18−20, 42
tubing wear, 16, 36, 38, 69
tubing-conveyed pumps, 114
turndown ratio, 8, 45
undertravel, 19
unloading the well sequence, 78
variable speed drives (VSDs), 53, 127−129
velocity strings and foam lift
about, 3, 101−102
advantages and challenges, 7
horizontal wells, 102
operating principles, 103
system components, 104
system design, 105−107
typical applications, 7, 102
venturi nozzle, 4, 110, 122
vertical wells
gas lift, 75
reciprocating rod lift, 6
viscosity, 6, 8−9, 11, 24, 46, 66−67, 106, 111,
117, 120
viscous fluids, 6, 11, 16, 57, 61, 69, 71
viscous oil, 6, 11, 15, 67
visibility constraints, 11
volumetric rate, 4, 41
water drive reservoirs, 1, 8, 75
water migration, 5
watercut meter, 126
well and flowline factors
inflow performance relationship (IPR), 9
well configuration factors, 10
wellhead control valves, 121
well-site intelligence, 127
wireline, 6−7, 74−75, 81, 111−112, 114−115
To obtain additional training materials, contact:

PETEX
THE UNIVERSITY OF TEXAS AT AUSTIN
PETROLEUM EXTENSION SERVICE
10100 Burnet Road, Bldg. 2
Austin, TX 78758
Telephone: 512-471-5940
or 800-687-4132
FAX: 512-471-9410
or 800-687-7839
E-mail: petex@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex

To obtain information about training courses, contact:

PETEX
LEARNING AND ASSESSMENT CENTER
THE UNIVERSITY OF TEXAS
4702 N. Sam Houston Parkway West, Suite 800
Houston, TX 77086
Telephone: 281-397-2440
or 800-687-7052
FAX: 281-397-2441
E-mail: plach@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex