The Auxiliaries

UNIT I • LESSON 9
ROTARY DRILLING SERIES

Unit I: The Rig and Its Maintenance
Lesson 1: The Rotary Rig and Its Components
Lesson 2: The Bit
Lesson 3: Drill String and Drill Collars
Lesson 4: Rotary, Kelly, Swivel, Tongs, and Top Drive
Lesson 5: The Blocks and Drilling Line
Lesson 6: The Drawworks and the Compound
Lesson 7: Drilling Fluids, Mud Pumps, and Conditioning Equipment
Lesson 8: Diesel Engines and Electric Power
Lesson 9: The Auxiliaries
Lesson 10: Safety on the Rig

Unit II: Normal Drilling Operations
Lesson 1: Making Hole
Lesson 2: Drilling Fluids
Lesson 3: Drilling a Straight Hole
Lesson 4: Casing and Cementing
Lesson 5: Testing and Completing

Unit III: Nonroutine Operations
Lesson 1: Controlled Directional Drilling
Lesson 2: Open-Hole Fishing
Lesson 3: Blowout Prevention

Unit IV: Man Management and Rig Management

Unit V: Offshore Technology
Lesson 1: Wind, Waves, and Weather
Lesson 2: Spread Mooring Systems
Lesson 3: Buoyancy, Stability, and Trim
Lesson 4: Jacking Systems and Rig Moving Procedures
Lesson 5: Diving and Equipment
Lesson 6: Vessel Inspection and Maintenance
Lesson 7: Helicopter Safety
Lesson 8: Orientation for Offshore Crane Operations
Lesson 9: Life Offshore
Lesson 10: Marine Riser Systems and Subsea Blowout Preventers

Cover photo
Parallel Column Racking System
Copyright © National Oilwell Varco
## Contents

- Figures v
- Foreword vii
- Preface ix
- Acknowledgments xi
- Units of Measurement xii

### Introduction 1

- Pipe-Handling Equipment 3
  - Kelly Spinners 3
    - Maintenance 6
  - Spring Slips and Power Slips 7
    - Maintenance 9
  - Automatic Pipe Handlers 11
    - History 11
    - Pipe-Handling Systems 12
  - To Summarize 15

### Rig Instruments 17

- Sensors, Indicators, and Recorders 17
  - Weight Indicators 19
  - Wire Rope and Wireline Monitors 20
  - Rotary Torque Indicators 21
  - RPM and SPM Indicators 22
  - Recorders 24
  - To Summarize 25

### Drilling Tools 27

- Adjustable Choke 27
- Automatic Drillers 29
- MWD and LWD Tools 30
  - How They Work 30
  - Uses 30
  - To Summarize 32

### Integrated Drilling Systems 33

- Computer 35
  - To Summarize 36

### Utilities 37

- Fuel Systems 37
  - Natural Gas and LPG 38
  - Gasoline and Diesel Oil 38
- Auxiliary Power Systems 39
  - Compressed Air 39
  - Hydraulic Power 40
- Water Systems 40
  - Storing and Transferring Water 40
  - Watermakers 41
  - To Summarize 48
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rig Cleanup Equipment</td>
<td>49</td>
</tr>
<tr>
<td>Pressure Washers</td>
<td>49</td>
</tr>
<tr>
<td>Maintenance</td>
<td>51</td>
</tr>
<tr>
<td>Steam Cleaners</td>
<td>52</td>
</tr>
<tr>
<td>How It Works</td>
<td>52</td>
</tr>
<tr>
<td>Maintenance</td>
<td>52</td>
</tr>
<tr>
<td>Treating Cuttings</td>
<td>53</td>
</tr>
<tr>
<td>How It Works</td>
<td>54</td>
</tr>
<tr>
<td>Waste Management</td>
<td>55</td>
</tr>
<tr>
<td>How It Works</td>
<td>56</td>
</tr>
<tr>
<td>Maintenance</td>
<td>56</td>
</tr>
<tr>
<td>To Summarize</td>
<td>57</td>
</tr>
<tr>
<td>Fire Detection and Suppression</td>
<td>59</td>
</tr>
<tr>
<td>Life Cycle of a Fire</td>
<td>60</td>
</tr>
<tr>
<td>The Start of a Fire</td>
<td>60</td>
</tr>
<tr>
<td>Burning</td>
<td>60</td>
</tr>
<tr>
<td>Growing and Fading</td>
<td>61</td>
</tr>
<tr>
<td>Burning Gases</td>
<td>62</td>
</tr>
<tr>
<td>Fire Triangle</td>
<td>62</td>
</tr>
<tr>
<td>Extinguishing a Fire</td>
<td>63</td>
</tr>
<tr>
<td>Removing the Heat</td>
<td>63</td>
</tr>
<tr>
<td>Removing the Fuel</td>
<td>63</td>
</tr>
<tr>
<td>Removing the Oxygen</td>
<td>63</td>
</tr>
<tr>
<td>Breaking the Chain Reaction</td>
<td>64</td>
</tr>
<tr>
<td>Classifying Fires</td>
<td>64</td>
</tr>
<tr>
<td>Fire Suppression Equipment</td>
<td>67</td>
</tr>
<tr>
<td>Portable Fire Extinguishers</td>
<td>67</td>
</tr>
<tr>
<td>Fixed Systems</td>
<td>70</td>
</tr>
<tr>
<td>Foam System</td>
<td>74</td>
</tr>
<tr>
<td>CO₂ System</td>
<td>77</td>
</tr>
<tr>
<td>Automatic Sprinklers</td>
<td>78</td>
</tr>
<tr>
<td>Water Spray Systems</td>
<td>78</td>
</tr>
<tr>
<td>Fire Detection Equipment</td>
<td>79</td>
</tr>
<tr>
<td>Fire Line Automatic System</td>
<td>79</td>
</tr>
<tr>
<td>Heat and Smoke Detectors</td>
<td>80</td>
</tr>
<tr>
<td>Combustible-Gas Detector</td>
<td>80</td>
</tr>
<tr>
<td>Manual Fire Alarms</td>
<td>81</td>
</tr>
<tr>
<td>Personal Safety Equipment</td>
<td>82</td>
</tr>
<tr>
<td>Bunker Suit</td>
<td>82</td>
</tr>
<tr>
<td>Maintenance of Protective Clothing</td>
<td>85</td>
</tr>
<tr>
<td>To Summarize</td>
<td>85</td>
</tr>
<tr>
<td>Appendix</td>
<td>87</td>
</tr>
<tr>
<td>Glossary</td>
<td>91</td>
</tr>
<tr>
<td>Review Questions</td>
<td>101</td>
</tr>
<tr>
<td>Index</td>
<td>107</td>
</tr>
<tr>
<td>Answers</td>
<td>113</td>
</tr>
</tbody>
</table>
Units of Measurement

Throughout the world, two systems of measurement dominate: the English system and the metric system. Today, the United States is one of only a few countries that employ the English system.

The English system uses the pound as the unit of weight, the foot as the unit of length, and the gallon as the unit of capacity. In the English system, for example, 1 foot equals 12 inches, 1 yard equals 36 inches, and 1 mile equals 5,280 feet or 1,760 yards.

The metric system uses the gram as the unit of weight, the metre as the unit of length, and the litre as the unit of capacity. In the metric system, 1 metre equals 10 decimetres, 100 centimetres, or 1,000 millimetres. A kilometre equals 1,000 metres. The metric system, unlike the English system, uses a base of 10; thus, it is easy to convert from one unit to another. To convert from one unit to another in the English system, you must memorize or look up the values.

In the late 1970s, the Eleventh General Conference on Weights and Measures described and adopted the Système International (SI) d'Unités. Conference participants based the SI system on the metric system and designed it as an international standard of measurement.

The Rotary Drilling Series gives both English and SI units. And because the SI system employs the British spelling of many of the terms, the book follows those spelling rules as well. The unit of length, for example, is metre, not meter. (Note, however, that the unit of weight is gram, not gramme.)

To aid U.S. readers in making and understanding the conversion system, we include the table on the next page.
### English-Units-to-SI-Units Conversion Factors

<table>
<thead>
<tr>
<th>Quantity or Property</th>
<th>English Units</th>
<th>Multiply English Units By</th>
<th>To Obtain These SI Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length, depth, or height</td>
<td>inches (in.)</td>
<td>25.4</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td></td>
<td>feet (ft)</td>
<td>0.3048</td>
<td>centimetres (cm)</td>
</tr>
<tr>
<td></td>
<td>yards (yd)</td>
<td>0.9144</td>
<td>metres (m)</td>
</tr>
<tr>
<td></td>
<td>miles (mi)</td>
<td>1609.344</td>
<td>metres (m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.61</td>
<td>kilometres (km)</td>
</tr>
<tr>
<td>Hole and pipe diameters, bit size</td>
<td>inches (in.)</td>
<td>25.4</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td>Drilling rate</td>
<td>feet per hour (ft/h)</td>
<td>0.3048</td>
<td>metres per hour (m/h)</td>
</tr>
<tr>
<td>Weight on bit</td>
<td>pounds (lb)</td>
<td>0.445</td>
<td>decanewtons (dN)</td>
</tr>
<tr>
<td>Nozzle size</td>
<td>32nds of an inch</td>
<td>0.8</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td></td>
<td>barrels (bbl)</td>
<td>0.159</td>
<td>cubic metres (m³)</td>
</tr>
<tr>
<td></td>
<td>gallons per stroke (gal/stroke)</td>
<td>0.00379</td>
<td>cubic metres per stroke (m³/stroke)</td>
</tr>
<tr>
<td></td>
<td>ounces (oz)</td>
<td>29.57</td>
<td>litres (L)</td>
</tr>
<tr>
<td>Volume</td>
<td>cubic inches (in.³)</td>
<td>16.387</td>
<td>cubic centimetres (cm³)</td>
</tr>
<tr>
<td></td>
<td>cubic feet (ft³)</td>
<td>28.3169</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>quarts (qt)</td>
<td>0.9464</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>gallons (gal)</td>
<td>3.7854</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>pounds per barrel (lb/bbl)</td>
<td>0.00379</td>
<td>cubic metres (m³)</td>
</tr>
<tr>
<td></td>
<td>barrels per ton (bbl/tn)</td>
<td>0.175</td>
<td>cubic metres per tonne (m³/ton)</td>
</tr>
<tr>
<td>Pump output and flow rate</td>
<td>gallons per minute (gpm)</td>
<td>0.00379</td>
<td>cubic metres per minute (m³/min)</td>
</tr>
<tr>
<td></td>
<td>gallons per hour (gph)</td>
<td>0.00379</td>
<td>cubic metres per hour (m³/h)</td>
</tr>
<tr>
<td></td>
<td>barrels per stroke (bbl/stroke)</td>
<td>0.159</td>
<td>cubic metres per stroke (m³/stroke)</td>
</tr>
<tr>
<td></td>
<td>barrels per minute (bbl/min)</td>
<td>0.159</td>
<td>cubic metres per minute (m³/min)</td>
</tr>
<tr>
<td>Pressure</td>
<td>pounds per square inch (psi)</td>
<td>6.895</td>
<td>kilopascals (kPa)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.006895</td>
<td>megapascals (MPa)</td>
</tr>
<tr>
<td>Temperature</td>
<td>degrees Fahrenheit (°F)</td>
<td>°F - 32</td>
<td>degrees Celsius (°C)</td>
</tr>
<tr>
<td>Mass (weight)</td>
<td>ounces (oz)</td>
<td>28.35</td>
<td>grams (g)</td>
</tr>
<tr>
<td></td>
<td>pounds (lb)</td>
<td>453.59</td>
<td>grams (g)</td>
</tr>
<tr>
<td></td>
<td>tons (tn)</td>
<td>0.4536</td>
<td>kilograms (kg)</td>
</tr>
<tr>
<td></td>
<td>pounds per foot (lb/ft)</td>
<td>0.9072</td>
<td>tonnes (t)</td>
</tr>
<tr>
<td>Mud weight</td>
<td>pounds per gallon (ppg)</td>
<td>119.82</td>
<td>kilograms per cubic metre (kg/m³)</td>
</tr>
<tr>
<td></td>
<td>pounds per cubic foot (lb/ft²)</td>
<td>16.0</td>
<td>kilograms per cubic metre (kg/m³)</td>
</tr>
<tr>
<td>Pressure gradient</td>
<td>pounds per square inch per foot (psi/ft²)</td>
<td>22.621</td>
<td>kilopascals per metre (kPa/m)</td>
</tr>
<tr>
<td>Funnel viscosity</td>
<td>seconds per quart (s/qt)</td>
<td>1.057</td>
<td>seconds per litre (s/L)</td>
</tr>
<tr>
<td>Yield point</td>
<td>pounds per 100 square feet (lb/100 ft²)</td>
<td>0.48</td>
<td>pascals (Pa)</td>
</tr>
<tr>
<td>Gel strength</td>
<td>pounds per 100 square feet (lb/100 ft²)</td>
<td>0.48</td>
<td>pascals (Pa)</td>
</tr>
<tr>
<td>Filter cake thickness</td>
<td>32nds of an inch</td>
<td>0.8</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td>Power</td>
<td>horsepower (hp)</td>
<td>0.75</td>
<td>kilowatts (kW)</td>
</tr>
<tr>
<td>Area</td>
<td>square inches (in.²)</td>
<td>6.45</td>
<td>square centimetres (cm²)</td>
</tr>
<tr>
<td></td>
<td>square feet (ft²)</td>
<td>0.0929</td>
<td>square metres (m²)</td>
</tr>
<tr>
<td></td>
<td>square yards (yd²)</td>
<td>0.8361</td>
<td>square metres (m²)</td>
</tr>
<tr>
<td></td>
<td>square miles (mi²)</td>
<td>2.59</td>
<td>square kilometres (km²)</td>
</tr>
<tr>
<td></td>
<td>acre (ac)</td>
<td>0.40</td>
<td>hectare (ha)</td>
</tr>
<tr>
<td>Drilling line wear</td>
<td>ton-miles (tn•mi)</td>
<td>14.317</td>
<td>megajoules (MJ)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.459</td>
<td>tonne-kilometres (t•km)</td>
</tr>
<tr>
<td>Torque</td>
<td>foot-pounds (ft•lb)</td>
<td>1.3558</td>
<td>newton metres (N•m)</td>
</tr>
</tbody>
</table>
Introduction

While much of the equipment on a rig site is the huge machinery that does the main work of drilling, many other tools and pieces of equipment round out the typical drilling operation. Besides the drilling equipment are the tools that allow the crew to work with pipe, the instruments that monitor drilling, the equipment that provides water and electricity, and the equipment that makes the job safer.

The drilling industry continuously improves both primary and auxiliary equipment. In particular, recent increases in deep offshore drilling and in directional and horizontal drilling have motivated numerous changes. Advances in automation have been especially dramatic. Automation on the rig is the use of automatic mechanical or electronic devices to replace human observation, labor, and decisionmaking. Automation replaces manual, repetitive tasks with machines, which removes people from hazardous work and locations. It allows more precise control of processes, and produces more consistent quality. Moreover, it allows one person to control several functions simultaneously, and it can make a company or an industry more competitive by reducing costs and waste.

Other lessons in this series go into detail about many of the auxiliary tools used on a drilling rig. This book covers equipment that is not mentioned in other lessons or is mentioned only briefly.

Types of auxiliaries:
- Pipe tools
- Monitoring instruments
- Water and electricity equipment
- Safety equipment
In this chapter:

- Automation of pipe-handling equipment
- Purpose of automated pipe-handling equipment
- Operation and care of kelly spinners
- Operation and handling of spring slips and power slips
- About automatic pipe handlers

Automation has changed, and in some cases eliminated, many manual tasks on the rig floor. On rigs that have automatic equipment, handling pipe and slips is no longer the heavy work it used to be. In many ways, automation has transformed the floorhand from a laborer to an operator. From the pipe handling side of the operation, automatic equipment includes kelly spinners, spring slips and power slips, and automated pipe-handling and racking systems.

On rigs using a kelly-and-rotary-table system (instead of a top drive) to rotate the bit, kelly spinners are great labor saving devices. A kelly spinner (fig. 1) is a pneumatic (powered by compressed air) or hydraulic (powered by a liquid called hydraulic fluid) motor attached to the top of the kelly or to the bottom of the swivel (fig. 2). The kelly spinner’s job is to rapidly turn, or spin, the kelly, mainly when making a connection—that is, when adding a joint of drill pipe to the string after the kelly has been drilled down.
In this chapter:

- What drilling parameters are
- Functions of sensors, indicators, and recorders
- Operation and care of weight indicators, wire rope, and wireline monitors
- Operation and care of rotary torque indicators
- About RPM and SPM indicators and recorders

A drilling rig instrument measures drilling parameters, equipment function, or formation characteristics; displays the measurements on a panel or a readout device; records the measurements; controls equipment within set limits; and stops operation if control fails.

Instruments on a rig include sensors, gauges, recorders, and various tools to control the machinery. Instruments can be bought and used independently of each other, but manufacturers also offer instrumentation systems where many instruments feed data to a central computer.

Sensors measure drilling parameters, which are factors that affect a drilling operation, such as the rate of penetration, pump rate, rotary revolutions per minute (rpm), weight on bit, and the like. The sensors send signals to an analog or digital readout, or gauge, which displays the information. An analog display is usually a needle on a dial (fig. 10). A digital display may be a liquid crystal display (LCD) or an electronic graphic representation on a cathode ray tube (CRT), which is similar to a standard TV screen. In either case, the display shows numbers and words or graphs (fig. 11).
Drilling Tools

In this chapter:

• How pressure in the well is maintained with a drilling choke
• How automatic drillers facilitate the job of human drillers
• Purposes of MWD and LWD tools

A drilling choke allows personnel involved in controlling a kick to maintain a predetermined amount of back-pressure on a well while circulating the kick out of the well. A kick can occur when the pressure in the hole opposite a porous and permeable formation is less than the pressure of the fluids in the formation. When pressure in the hole is less than formation pressure, the hole is said to be underbalanced. When the hole is underbalanced, formation fluids can enter the hole. Pressure in the hole can be less than formation pressure when the weight, or density, of the drilling mud is not great enough to develop enough pressure to balance formation pressure. An alert drilling crew promptly notices that a kick has occurred and takes steps to control the well—that is, to prevent further entry of formation fluids and to increase pressure in the wellbore to balance formation pressure.

Actions crewmembers take on noting a kick include stopping mud from circulating by stopping the mud pumps and shutting in (closing) a blowout preventer, which closes in the well and prevents the further entry of formation fluids. But they cannot open the blowout preventer until the mud weight has been increased and circulated throughout the well; otherwise, formation fluids could re-enter the well.

• Adjustable Choke

• A kick occurs when the drilling fluid does not exert enough pressure on the formation.
• After a kick, back-pressure must be maintained on the drilling fluid column to prevent a blowout.
In this chapter:

- Performance of an integrated drilling system
- How it improves rig safety and efficiency
- Operation of computerized integrated drilling systems

When a rig is equipped with conventional drilling instruments, the readout for each instrument is usually mounted on the driller’s console (fig. 19). With conventional instruments, the driller, in order to maintain optimum drilling conditions, must continuously look at all the information, from mud flow rate, to WOB, to ROP. The driller must then determine how all the information interrelates and affects drilling efficiency. Mistakes can be dangerous, costly, or both.

Figure 19. The driller’s console has space for many analog and digital readouts.
In this chapter:

• Types of utilities needed on a rig
• Fuel systems that supply rig engines
• Compressed-air and hydraulic systems that supply auxiliary components
• Systems that supply water for operating and drinking

A drilling rig, like any other isolated plant or factory, demands the convenience of various utilities—fuel for the engines, water for auxiliary equipment and for human use and compressed air and hydraulic systems to power auxiliary equipment. Electricity also powers much of the auxiliary equipment. Since most modern rigs are diesel-electric, the generators not only power the motors to drive the equipment, but also provide electricity to light and perhaps heat or cool the rig. Mechanical rigs require auxiliary electric generators, often called light plants, to provide power for auxiliary equipment.

Fuel systems may provide natural gas, liquefied petroleum gas (LPG), gasoline, diesel oil, crude oil, or any combination of these fuels. Today, except in rare instances, most engines that power the rig run on diesel fuel. Diesel is easier to transport and store than natural gas or LPG and it is not as volatile as gasoline. In a few instances, however, where a rig is operating near an easily tapped and abundant supply of natural gas or LPG, these fuels may be used. Similarly, in a few instances, where a small engine is required to operate a piece of auxiliary equipment, the only type available may be fueled by gasoline.

Fuel Systems

• Most rig engines use diesel fuel.
• Some engines use natural gas or LPG (when one of those is readily available).
• Some small engines for auxiliary equipment use gasoline.
Rig Cleanup Equipment

In this chapter:

- Cleaning the rig for safety and the environment
- Use and maintenance of pressure washers, steam cleaners, and vacuums
- How used cuttings are cleaned
- Waste management on a rig

Cleaning dirt, oil, and other liquids from the rig site is important for safety and for the environment. A pressure washer or steam cleaner cleans oil and dirt from rig equipment, and a special vacuum cleans up spilled liquids.

Cleaning cuttings is also a consideration on rigs that use oil-based drilling mud. Environmental regulations usually do not allow the rig operator to dump them without washing them first.

Pressure washers (fig. 31) use a high-pressure spray of water to clean anything on the rig that is oily or dirty. If a cleaning agent is required, the units provide a place to install a bottle of an environmentally safe detergent to mix with the water. The crew may also use a pressure washer to clean shaker screens, using water or base oil, depending on the type of drilling mud in use. Pressure washers are pneumatic—an air motor powers a triplex pump to pump the water or oil through a hose and wand assembly.

Equipment for cleaning oil and dirt on rigs:
- Pressure washers
- Steam cleaners
- Vacuum cleaners
- Cutting cleaning systems

Pressure Washers
Fire Detection and Suppression

In this chapter:

- Training in fire prevention and suppression
- How fires burn
- How different types of fires are extinguished
- Operation and care of fire suppression equipment
- How fire detection equipment works
- Personal fire safety equipment on a rig

Flammable materials are all over a drilling site—oil and grease, natural gas, solvents, rubber hoses, cloth, and paper. Ignition sources are common as well—lit cigarettes, welding torches, and sparks from motors, for example. So fire prevention, detection, and suppression are crucial to safe operation of a drilling rig.

Everyone on a drilling rig should have training in fire prevention and take every precaution to prevent fires—where you see a no smoking sign, for instance, don’t smoke. Anyone servicing or operating equipment that involves sparks or flames must know when and how to work safely.

All persons on a drilling rig should know what to do if they see a fire, and know exactly what to do and where to go when a fire alarm sounds. Everyone should know where the rig’s fire extinguishers are and how to operate them. Especially offshore, every crewmember depends on each other for safety in the event of a fire.
Index

Throughout this index, f indicates a figure on that page.

adjustable choke, 27–28, 32
aerosol, 63
air compressors, 39, 39f, 48
air cylinder, 84, 84f
air hoists, 39
air motor, 49, 51, 57
air supply for the firefighter, 84, 84f
alarms
  air cylinder, 85
  CO₂, 77
  combustible-gas, 80
  computer, 35
  fire, 59, 78, 79–81, 79f, 86
  manual fire, 81, 81f, 86
  setting limits on, 19
  smoke, 80
  watermaker, 43, 47
aluminum tension load cell, 20
Anadrill logging unit, 31f
analog readout/display
  on the driller’s console, 33, 33f
  overview of, 17, 10
  on a weight indicator, 18f, 19, 20
antifreeze, for cold climates, 70
attack hoses, 72
automatic choke. See adjustable choke.
automatic control. See automation; instrumentation.
automatic drillers, 29, 29f, 32. See also driller.
automatic pipe handlers, 11–15, 12f. See also column rackers.
automatic sprinklers, 78, 78f, 86
automation. See also computerization.
  changing the drilling industry, 1
  development of in pipe-handling systems, 11–15
within the integrated drill system, 35
in pipe-handling, 3
auxiliary power systems, 39–40, 48
back-pressure, 27, 28
bail, 72, 73f
bits, 21, 22
blowout preventer, 27–28, 40
boom, 13f
bottlenecking the pipe, 7
bowl assembly, 7f, 9, 9f, 10
brackish water, 40
brake handle, weight on bit and, 29
break out a connection. See connections, making and breaking.
brine, 41, 41f
bunker suit, 82–85, 83f, 86
calibration, 23
carbon dioxide (CO₂), 60f, 63, 65, 86
carbon monoxide, 84
casing, running, 11
cathead, 5
cathode ray tube (CRT), 17
centrifugal compressor, 42
centrifugal pump, 46
choke, 28, 28f
choke line, 28
choke manifold, 28, 28f
Class-A fires, 64, 64f, 68, 68f, 69
Class-B fires, 65, 65f, 68, 68f, 69
Class-C fires, 65, 65f, 68, 68f, 69
Class-D fires, 66, 66f, 69
cleaning agents, 49
column rackers, 13–14, 13f, 15. See also automatic pipe handlers.
combustible-gas detector, 80, 80f, 86
combustion, 60
company employee, 34. See also operator.
compressed air power. See air compressors.
computerization, 11. See also automation; integrated drilling systems.
computers, 35–36
condensation, 41, 42
condenser, 41f, 42, 54, 54f
connections, making and breaking
kelly spinners and, 3, 5, 15
power slips and, 7, 8
on a rotary rig, 5
torque indicators for, 22
console, driller's. See driller's console.
control valve, fire station, 73f
controls. See also driller's console; instrumentation; valves.
adjustable choke, 27–28
in the air supply tank, 84
on an automatic driller, 29
automation and, 1, 11
climate, 11, 34, 34f
computer, 43
of a crane, 15
in the day tank, 38
in the fire line automatic system, 79f
of a fire station monitor, 71, 86
in an integrated drilling system, 34, 34f
of the kelly spinner, 4f
of power slips and spiders, 8, 8f, 15
of a pressure washer, 52
for rate of penetration, 10
on the rig floor, 46, 47f
of torque, 22
of a watermaker, 47–48
corrosion, 43f, 45, 48, 70
crane, 12, 14, 15
crane-and-rack system, 13
crewmembers, 27, 81, 82. See also operator.
CRT. See cathode ray tube (CRT).
cuttings, cleaning, 53–54, 57
day tank, 38, 38f, 40
deadline, 19
defensive hoses, 72
deluge valve, 78, 86
demister, 41, 42
derrick, 34
desalination unit, 46, 48
desorption system, 53–54, 53f, 54f, 57
diesel fuel/oil, 37, 38
digital readout/display on the driller's console, 31f, 33, 33f
overview of, 17, 18f, 19
directional drilling, 1, 6, 30
distance sensor, 20
distillation, 41, 41f
downhole, 20, 30
downhole motor, 35
drawworks brake, 29
drawworks drum, 20
drill collar, 5, 22
drill pipe, 3, 5–6, 7, 21, 52f. See also pipe-handling equipment
drift string, 5, 21
driller. See also automatic drillers.
calibrating rig's weight, 23
maintaining weight on bit, 29
setting torque, 22
software used by, 35–36
using automated equipment, 11–12, 15, 27
using LWD and MWD, 30
using spring and power slips, 7–8, 15
using the integrated drilling system, 33–34
using the kelly spinner, 5–6
driller's console, 12, 19, 22, 23, 33–34, 33f. See also controls; gauges.
 drilling line wear, 20
drilling mud, 30, 32, 40, 55
drilling parameters, 17
drilling systems, integrated, 24, 33–36, 34f, 35f
drilling tools
adjustable choke, 27–28
automatic drillers, 29
MWD and LWD tools, 30
electric drive rigs, 22, 39
electricity, for powering equipment, 37
electronic graphic representation, 17
electronic recorders, 24, 25f
capsulated micron aerosol agents (EMAA), 63
generators
for centrifugal compressors, 42
cooling, 40, 44
fuel used by, 37
fuels for, 38  
transferring power of, 21  
waste heat from, 44, 45  
environmental concerns  
cleaning agents, 49  
EMAA's, 63  
waste disposal, 55  
evacuation drills, 82  
evaporation chamber, 41  
evaporators, 41–43, 41f, 44, 45, 48  
exchanger. See heat exchanger.

fatigue, worker, 7–8
filter purification units, 40
fingerboard, 13–14, 14f
fire
classifying, 64–66
extinguishing, 63–64, 68
foam and, 77
life cycle of, 60–62, 60f
overview of, 59
fire alarm boxes, 81, 81f
fire detection equipment
combustible-gas detector, 80, 86
fire line automatic system, 79, 86
heat and smoke detectors, 80, 86
manual fire alarms, 81, 86
fire extinguisher, 85
fire hoses, 70, 72, 72f, 86
fire line automatic system, 79, 79f, 86
fire prevention, training in, 59
fire pumps, 70, 85
fire stations, 70–74, 72, 73f
fire suppression equipment
automatic sprinklers, 78, 78f, 86
CO, systems, 77
fixed systems, 70–74
foam systems, 63, 74–77, 86
Halons, 64
portable fire extinguishers, 67–70
using multiple, 66
water for, 70–71
water spray systems, 78, 86
fire triangle, 62, 62f
firefighters, personal safety equipment for, 82–85, 83f
fire-main system, 70–71, 85
fishing, 6
flammable materials
abundance of, 59

Class-A fires, 64, 64f
Class-B fires, 65, 65f
Class-C fires, 65
Class-D fires, 66
vapors, 80f
flash evaporator, 45, 48
floats, 56
floorhands, 7
gallonage, 72
gases, burning, 62. See also vapors.
gasoline, 37–38
gauges. See also analog readout/display; digital readout/display; driller’s console.
on an air supply cylinder, 84, 85
on a fire extinguisher, 70
overview of, 17
pressure, 43, 47, 51
on reverse osmosis units, 47, 47f
RPM, 23
SPM, 23
strain, 19
torque indicator, 22
Geolograph, 24, 35
grease, 9, 59, 65, 85

Halons, 64, 77
heat detectors, 80, 86
heat exchanger, 40, 42
heat in the fire triangle, 62, 62f
helipads, 71, 74
hook load, 19
horizontal drilling, 1, 30
horizontal pipe transfer systems, 12, 12f, 15
hose connection, fire station, 73f
hose rack, fire station, 73f
hydrates, 38
hydraulic fluid, 3, 19
hydraulic hoses, 19, 20
hydraulic kelly spinners, 3, 4f, 5
hydraulic load cell, 19, 20
hydraulic power, 40, 48. See also water.
hydrogen chloride, 84
hydrogen cyanide, 84

ignition sources, 59
ignition temperature, 60
impeller, 42, 43
indicators. See instrumentation; recording instruments.
inert gases, 63
in-line proportioner, 76, 76
instrumentation. See also controls; recording instruments.
on the choke control panel, 28
for LWD and MWD, 30, 31
maintenance and calibration, 23
overview of, 17, 18f, 19
recorders, 24, 25
rotary torque indicators, 21–22, 21f
for RPM and SPM, 22–23
weight indicators, 19
wire rope and wireline monitors, 20
integrated drilling systems, 33–36, 34f, 35f. See also computerization; driller.
Internet, integrated drilling systems and, 36
Intranet, integrated drilling systems and, 36
Iron Roughnecks\textsuperscript{TM}, 11

joints, spinning up, 5
kelly, 3, 5–6
kelly saver sub, 5
kelly spinners, 3, 4f, 5–6, 15
kelly-and-rotary-table system, 3, 5
kick, 27, 32

life jackets, 82
liquefied petroleum gas (LPG), 37, 38, 65
liquid crystal display (LCD), 17, 18f
liquids, 60
load. See book load; hydraulic load cell.
locked cones, 21
logging while drilling (LWD) tools, 30, 31f, 32
logistic controller, 43
lubricants, disposal of, 55
lubrication, 9, 9f, 43, 48, 51
magnetization, 22–23
maintenance
automatic sprinkler systems, 78
evaporators, 48
fire extinguisher, 70
of the fire-main system, 74
foam systems, 76
of indicators and sensors, 23
of the kelly spinner, 6
power slips, 9–10, 9f, 10f
of pressure washers, 51
of protective clothing, 85
of a reverse osmosis watermaker, 48
of a steam cleaner, 52
of the vacuum unit, 56
of a vapor compression evaporator, 43
making up. See connections, making and breaking.
manual fire alarms, 86
measurement while drilling (MWD) tools, 30, 31f, 32
mechanical drilling recorder, 24, 24f
mechanical load cell, 21
mechanical nozzle, 75, 75f
mechanical rigs, 21–22, 39
megajoules, 20
membrane, 45, 48
methane, 60f
microprocessor, 19
monitors, 70, 71, 71f, 86
motor
air, 49, 51, 57
downhole, 35
kelly spinner, 3, 15
rotary drive, 22
top drive, 22
mousehole, 5, 6, 12, 15
mud pumps, 22, 28
MWD. See measurement while drilling (MWD) tools.

National Fire Protection Association (NFPA), 64
natural gas, 37, 38, 65
newton sensor, 20
nozzles, 72, 75, 75f, 86

offshore drilling
importance of fire safety training, 82
increases in, 1
pipe handling on, 11
potable water on, 40
waste disposal and, 55, 57
water supply for fire systems, 70
oil-based mud, 57
operator. See also company employee; crew members.
automation and, 3
crane, 15
offshore, 55
rig, 49
setting alarm limits, 19
steam cleaner, 52
using the adjustable choke, 28
osmosis, 45f; 46
osmotic pressure, 46
oxidation, 60, 62
oxygen, 60, 60f, 62, 62f, 63

parallel racker, 14, 14f
permeability, 45
permeator, 46, 47, 47f
personal safety equipment, 82–85, 86
pickup-and-laydown system, 12, 12f, 15
pipe deck crane, 12, 15
pipe rack, 12, 15
pipe-handling equipment. See also drill pipe.
automated, 11–15
kelly spinners, 3, 4f, 5–6, 15
spring and power slips, 7–10, 7f, 8f, 9f, 10f, 15
pneumatic hoses, 19, 39
pneumatic kelly spinner, 3, 4f
pneumatic pressure washer, 49
pneumatic tools, 39, 39f
pneumatic tube fire detector, 79, 79f
portable fire extinguishers, 67–70, 67f, 69f
potable water, 40
power elevators, 11
power slips, 7–10, 7f, 9f, 10f, 15
power swivels, 40
power systems, auxiliary, 39–40
power tongs, 11, 40
power tools. See hydraulic power; pneumatic tools.
pump pinion/piston, 23
pumps
automatic sprinklers and, 78
centrifugal, 46
for evaporators, 42, 44, 45f, 46, 46f
in the fire-main system, 70, 85
maintenance, 48, 51, 52, 56, 57
monitoring discharge pressure, 47
mud, 22, 28
rate of, 17, 22
reciprocating, 46
supply, 38, 38f
triplex, 49, 52
vacuum, 54, 56
racking systems, 11
radial racker, 14f
radiant heat, 60–61, 83f
radiation feedback, 61, 81f
rate of penetration (ROP), 17, 19
rathole, 6
reciprocating pump, 46
recording instruments. See also instrumentation.
electronic, 25f
in integrated drilling systems, 34, 35f
for LWD and MWD, 30, 31f
mechanical, 24f
overview of, 17, 18f, 19, 24–25
regulator in an air supply tank, 84
reverse osmosis watermaker, 45–48, 45f, 46f, 47f
revolutions per minute (RPM), 17, 22–23
rig, automation on, 1
rig cleanup equipment
for cuttings, 53–54
pressure washers, 49, 50f, 51
steam cleaners, 52, 52f
waste management, 55–56
rig floor
automation on, 3
controls on, 4f, 8
integrated drilling systems and, 34
pipe-handling systems, 12, 13, 15
spills on, 55, 57
rig instruments. See instrumentation.
ROP: See rate of penetration (ROP).
rotary speed, 22
rotary table, 22
rotary torque indicators, 21–22, 21f
rotating, using the kelly spinner for, 6 RPM. See revolutions per minute (RPM). RPM indicator, 22–23

safety
automatic pipe handlers, 15
EMAA, 63
importance of education about, 59
kelly spinners and, 5
offshore drilling, 59
during pipe handling, 11
reverse osmosis watermakers and, 47
spilled drilling mud and, 55
safety valves, 63, 71
salt water, 41, 45, 45f, 46, 48
scale, 43, 45, 46, 48
seawater, 40
semipermeable membrane, 45, 46
sensors. See instrumentation; recording instruments.
shut-in well, 28
slips, 5, 7–8
smoke, inhalation of, 84
smoke detectors, 80, 86
solids, 60
solvents for pressure washer, 51
spiders, 7–8, 15
spinning chains/wrench, 5
SPM. See strokes per minute (SPM).
SPM indicator, 22–23
spring slips, 7–10, 8f, 9f, 10f
star racker, 14, 14f
steam cleaners, 52, 52f, 57
storage of water, 40
strain gauge, 49
strokes per minute (SPM), 22–23
supply pump, 38, 38f

tom-miles, 20
tool joint, 5, 22
toolpusher, 34
top drives, 11, 22
torque, 21
transducer, 19
triplex pump, 49, 52
tripping in/out, 8
tubulars, 11
two-stage compressors, 39
underbalanced hole, 27
undergauge hole, 21
U.S. Air Force, 63
vacuum, 44
vacuum cleaner, 55–56, 55f, 57
vacuum pump, 54, 56
valves. See also controls.
in the adjustable choke, 28
in automatic sprinkler systems, 78f
in the CO2 system, 77
deluge, 78, 86
in the fire station, 72, 73f, 79f
in the kelly spinner, 4f
in the power slips, 8
pressure relief, 52, 56
safety, 63, 71
in watermakers, 45f
vapor compression evaporators, 42–43, 42f, 43f, 48
vapors, 60–62, 61f. See also gases, burning.
V-belt, 23, 39
V-door, 12, 12f, 15
venturi effect, 74
venturi tube, 56, 74
vertical racking systems, 13–14, 13f, 15
waste heat evaporator, 44, 44f, 48
waste management, 55–56, 57
water. See also fresh water; hydraulic power.
for fire suppression, 70–71
pretreating, 46
water spray systems, 78, 86
water systems, 40–41, 48
watermakers
evaporators, 41–45, 41f, 42f, 44f
overview of, 40
reverse osmosis, 45–48, 45f, 46f, 47f
weight indicator, 18f, 19, 23, 29
weight on bit (WOB), 17, 19, 29, 29f
well, circulating, 28
wire rope, 20
wireline monitors, 20
wireline weight indicator, 20
WOB. See weight on bit (WOB).
To obtain additional training materials, contact:

PETEX
THE UNIVERSITY OF TEXAS AT AUSTIN
PETROLEUM EXTENSION SERVICE
J.J. Pickle Research Campus
10100 Burnet Road, Bldg. 2
Austin, TX 78758
Telephone: 512-471-5940
or 800-687-4132
FAX: 512-471-9410
or 800-687-7839
E-mail: petex@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex

To obtain information about training courses, contact:

PETEX
LEARNING AND ASSESSMENT CENTER
THE UNIVERSITY OF TEXAS
4702 N. Sam Houston Parkway West, Suite 800
Houston, TX 77086
Telephone: 281-397-2440
or 800-687-7052
FAX: 281-397-2441
E-mail: plach@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex