ROTARY DRILLING SERIES

Unit I: The Rig and Its Maintenance
Lesson 1: The Rotary Rig and Its Components
Lesson 2: The Bit
Lesson 3: Drill String and Drill Collars
Lesson 4: Rotary, Kelly, Swivel, Tongs, and Top Drive
Lesson 5: The Blocks and Drilling Line
Lesson 6: The Drawworks and the Compound
Lesson 7: Drilling Fluids, Mud Pumps, and Conditioning Equipment
Lesson 8: Diesel Engines and Electric Power
Lesson 9: The Auxiliaries
Lesson 10: Safety on the Rig

Unit II: Normal Drilling Operations
Lesson 1: Making Hole
Lesson 2: Drilling Fluids
Lesson 3: Drilling a Straight Hole
Lesson 4: Casing and Cementing
Lesson 5: Testing and Completing

Unit III: Nonroutine Operations
Lesson 1: Controlled Directional Drilling
Lesson 2: Open-Hole Fishing
Lesson 3: Blowout Prevention

Unit IV: Man Management and Rig Management

Unit V: Offshore Technology
Lesson 1: Wind, Waves, and Weather
Lesson 2: Spread Mooring Systems
Lesson 3: Buoyancy, Stability, and Trim
Lesson 4: Jacking Systems and Rig Moving Procedures
Lesson 5: Diving and Equipment
Lesson 6: Vessel Inspection and Maintenance
Lesson 7: Helicopter Safety
Lesson 8: Orientation for Offshore Crane Operations
Lesson 9: Life Offshore
Lesson 10: Marine Riser Systems and Subsea Blowout Preventers
<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figures</td>
<td>vi</td>
</tr>
<tr>
<td>Tables</td>
<td>viii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>ix</td>
</tr>
<tr>
<td>About the Authors</td>
<td>x</td>
</tr>
<tr>
<td>Units of Measurement</td>
<td>xiv</td>
</tr>
<tr>
<td>Overview</td>
<td>1</td>
</tr>
<tr>
<td>To summarize</td>
<td>4</td>
</tr>
<tr>
<td>Formation Pressure</td>
<td>5</td>
</tr>
<tr>
<td>Formulation Pressure Gradients</td>
<td>7</td>
</tr>
<tr>
<td>Normal and Abnormal Pressures</td>
<td>9</td>
</tr>
<tr>
<td>Hydrostatic Pressure versus Formation Pressure</td>
<td>11</td>
</tr>
<tr>
<td>Circulating Pressure</td>
<td>14</td>
</tr>
<tr>
<td>Pressure Surges and Swabbing</td>
<td>15</td>
</tr>
<tr>
<td>Hole Filling</td>
<td>17</td>
</tr>
<tr>
<td>Formation Fracture and Lost Circulation</td>
<td>20</td>
</tr>
<tr>
<td>To summarize</td>
<td>24</td>
</tr>
<tr>
<td>Abnormal-Pressure Formations</td>
<td>25</td>
</tr>
<tr>
<td>Shale Compaction</td>
<td>25</td>
</tr>
<tr>
<td>Detection of Abnormal Pressure</td>
<td>28</td>
</tr>
<tr>
<td>Drilling Rate Changes</td>
<td>28</td>
</tr>
<tr>
<td>Sloughing Shale</td>
<td>30</td>
</tr>
<tr>
<td>Shale Density</td>
<td>30</td>
</tr>
<tr>
<td>Gas-Cut Mud</td>
<td>31</td>
</tr>
<tr>
<td>Chloride Increases</td>
<td>31</td>
</tr>
<tr>
<td>Mud Temperature Increase</td>
<td>32</td>
</tr>
<tr>
<td>Electric Log Data</td>
<td>32</td>
</tr>
<tr>
<td>To summarize</td>
<td>34</td>
</tr>
<tr>
<td>Kick Detection</td>
<td>37</td>
</tr>
<tr>
<td>Pit Gain</td>
<td>39</td>
</tr>
<tr>
<td>Mud Flow from the Well</td>
<td>41</td>
</tr>
<tr>
<td>Increase in Flow While Circulating</td>
<td>42</td>
</tr>
<tr>
<td>Drilling Break</td>
<td>42</td>
</tr>
<tr>
<td>Decrease in Circulation Pressure</td>
<td>43</td>
</tr>
<tr>
<td>Shows of Gas, Oil, or Salt Water</td>
<td>44</td>
</tr>
<tr>
<td>Gas Behavior and Gas-Cut Mud</td>
<td>45</td>
</tr>
<tr>
<td>To summarize</td>
<td>48</td>
</tr>
<tr>
<td>Killing a Well Kick Onshore</td>
<td>49</td>
</tr>
<tr>
<td>Steps to Control an Onshore Well Kick if on Bottom</td>
<td>50</td>
</tr>
<tr>
<td>While Drilling</td>
<td>50</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Controlling a Well Kick While Making a Trip</td>
<td>51</td>
</tr>
<tr>
<td>Drill Pipe as a Bottomhole Pressure Gauge</td>
<td>51</td>
</tr>
<tr>
<td>Slow Pump Rate</td>
<td>54</td>
</tr>
<tr>
<td>Driller’s Method</td>
<td>55</td>
</tr>
<tr>
<td>Wait-and-Weight Method (Engineer’s Method)</td>
<td>62</td>
</tr>
<tr>
<td>Concurrent Method</td>
<td>67</td>
</tr>
<tr>
<td>Bullhead Kill Method</td>
<td>67</td>
</tr>
<tr>
<td>Dynamic Kill Method</td>
<td>68</td>
</tr>
<tr>
<td>Momentum Kill Method</td>
<td>69</td>
</tr>
<tr>
<td>Kicks with Drill Pipe off Bottom</td>
<td>70</td>
</tr>
<tr>
<td>Top Kill (Volumetric)</td>
<td>70</td>
</tr>
<tr>
<td>Reverse Circulation</td>
<td>71</td>
</tr>
<tr>
<td>Mistakes in Well Control</td>
<td>72</td>
</tr>
<tr>
<td>Pulling into the Casing</td>
<td>72</td>
</tr>
<tr>
<td>Constant Pit-Level Method</td>
<td>72</td>
</tr>
<tr>
<td>Excessive Mud Weight</td>
<td>73</td>
</tr>
<tr>
<td>Constant Choke-Pressure Method</td>
<td>73</td>
</tr>
<tr>
<td>To summarize</td>
<td>74</td>
</tr>
<tr>
<td>Kick Control in Offshore Operations</td>
<td>77</td>
</tr>
<tr>
<td>Diverter BOP Systems</td>
<td>78</td>
</tr>
<tr>
<td>Procedure to Control the Well with a Diverter System</td>
<td>79</td>
</tr>
<tr>
<td>Controlling Kick from a Floating Rig with Competent</td>
<td>79</td>
</tr>
<tr>
<td>Casing Set</td>
<td></td>
</tr>
<tr>
<td>To summarize</td>
<td>80</td>
</tr>
<tr>
<td>Special Problems in Kick Control</td>
<td>81</td>
</tr>
<tr>
<td>Shallow Gas Formations</td>
<td>81</td>
</tr>
<tr>
<td>Kicks with the Drill Pipe Out of the Hole</td>
<td>82</td>
</tr>
<tr>
<td>Stripping into the Hole</td>
<td>86</td>
</tr>
<tr>
<td>Surface Pressure Conditions</td>
<td>86</td>
</tr>
<tr>
<td>Preliminary Procedures for Stripping In</td>
<td>86</td>
</tr>
<tr>
<td>Stripping In with the Annular Preventer</td>
<td>87</td>
</tr>
<tr>
<td>Stripping with Ram Preventers (Ram-to-Ram Stripping)</td>
<td>91</td>
</tr>
<tr>
<td>Volumetric Displacement Correction for Casing Pressure</td>
<td>92</td>
</tr>
<tr>
<td>Stripping Out of the Hole</td>
<td>94</td>
</tr>
<tr>
<td>Hole in the Drill Pipe</td>
<td>94</td>
</tr>
<tr>
<td>Plugged Pipe or Bit</td>
<td>94</td>
</tr>
<tr>
<td>Snubbing Operations</td>
<td>96</td>
</tr>
<tr>
<td>Lost Circulation</td>
<td>98</td>
</tr>
<tr>
<td>To summarize</td>
<td>100</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Preventer Equipment</td>
<td>103</td>
</tr>
<tr>
<td>Pressure Ratings</td>
<td>106</td>
</tr>
<tr>
<td>Flanges and Fittings</td>
<td>106</td>
</tr>
<tr>
<td>Casing and Wellheads</td>
<td>110</td>
</tr>
<tr>
<td>Annular Preventers</td>
<td>115</td>
</tr>
<tr>
<td>Pipe Ram Preventers</td>
<td>117</td>
</tr>
<tr>
<td>Drilling Spools/Flow Cross</td>
<td>122</td>
</tr>
<tr>
<td>Mud Riser and Fill-up Connections</td>
<td>125</td>
</tr>
<tr>
<td>Rotating Heads</td>
<td>127</td>
</tr>
<tr>
<td>Operating Equipment</td>
<td>128</td>
</tr>
<tr>
<td>Flow and Choke Fittings</td>
<td>134</td>
</tr>
<tr>
<td>Kill Lines</td>
<td>136</td>
</tr>
<tr>
<td>Mud-Handling Equipment</td>
<td>137</td>
</tr>
<tr>
<td>Auxiliaries</td>
<td>140</td>
</tr>
<tr>
<td>Kelly Cock</td>
<td>140</td>
</tr>
<tr>
<td>Inside Blowout Preventer</td>
<td>142</td>
</tr>
<tr>
<td>Accessories</td>
<td>144</td>
</tr>
<tr>
<td>Degasser</td>
<td>144</td>
</tr>
<tr>
<td>Trip Tank</td>
<td>145</td>
</tr>
<tr>
<td>Pit-level Indicator and Pit-volume Recorder</td>
<td>146</td>
</tr>
<tr>
<td>Pump Stroke Counter</td>
<td>148</td>
</tr>
<tr>
<td>Mud-Flow Indicator</td>
<td>149</td>
</tr>
<tr>
<td>To summarize</td>
<td>150</td>
</tr>
<tr>
<td>Preventer Tests and Drills</td>
<td>153</td>
</tr>
<tr>
<td>Testing Procedures</td>
<td>154</td>
</tr>
<tr>
<td>Testing on Casing</td>
<td>154</td>
</tr>
<tr>
<td>Testing with a Hanger Plug</td>
<td>156</td>
</tr>
<tr>
<td>Cup or Packer Tests</td>
<td>157</td>
</tr>
<tr>
<td>Blowout Preventer Drills</td>
<td>158</td>
</tr>
<tr>
<td>To summarize</td>
<td>160</td>
</tr>
<tr>
<td>Appendix</td>
<td>161</td>
</tr>
<tr>
<td>Glossary</td>
<td>167</td>
</tr>
<tr>
<td>Review Questions</td>
<td>189</td>
</tr>
<tr>
<td>Index</td>
<td>195</td>
</tr>
<tr>
<td>Answers</td>
<td>205</td>
</tr>
</tbody>
</table>
About the Authors

TIM BELL

Tim Bell is a Senior Well Control Engineer for Cudd Well Control. Tim has over eight years experience in the oil and gas industry. He is involved in all phases of well-control engineering, including blowout contingency planning, dynamic well-kill design and execution, underground blowout control, rig equipment inspections, engineering, and field operations.

Tim has experience in the majority of petroleum producing states in the United States. He also has experience with international blowouts, firefighting operations, on- and offshore events, inland barge blowouts, H₂S wells, oil-based mud kicks, and high-pressure and geothermal wells. Tim has been involved with special service projects including ROV assisted subsea hot tapping, freeze jobs and post-event consulting. Tim has held several positions in well control, drilling, completions, production and workovers as an operations engineer and wellsite supervisor. In addition to blowouts and well control jobs, Tim’s past projects have included horizontal wells, coalbed methane exploration and development, deep gas wells, and unconventional tight gas reservoirs.

Tim graduated from Texas Tech University with a Bachelor’s degree in Petroleum Engineering. Upon graduation, he was hired by Devon Energy as an operations engineer. In the fall of 2004, Tim left Devon to become Vice President of Operations for Quest Resources. Tim made the move to Cudd Well Control in January of 2007 and currently holds the position of Senior Well Control Engineer. Tim is involved in all aspects of well-control engineering, blowout intervention and firefighting operations and recovery. Tim is a member of the Society of Petroleum Engineers and is IADC WellCAP certified.
Dan Eby is the Vice President of Operations and Engineering Manager for Cudd Well Control. Dan has 29 years of experience in the petroleum industry with several major oil companies and well-control service providers. As Vice President of Operations, Dan is in charge of the daily operation of Cudd Well Control, including all technical field work and business decision making.

As Engineering Manager, he is involved in all phases of well-control engineering including blowout contingency planning, relief well planning, dynamic kill design and execution, and field operations. Dan has worked in over 30 different countries with diverse assignments in well control, drilling, completions, and workover. He has acted as both project engineer and well site supervisor. In addition to blowouts, the projects include deepwater exploration, HPHT sour gas wells, horizontal wells, subsea completions, coalbed methane exploration, and hazardous waste disposal wells.

In addition to work on well-control jobs and blowouts, Dan’s experience includes well-control instruction, development of well-control technical manuals, development of recommended practices for unconventional well-control problems, acting as MMS liaison, and the design and supervision of high-pressure snubbing jobs, both onshore and offshore.

Dan graduated from Texas A&M University with a B.S. in Building Construction in 1977, followed by a B.S. in Civil Engineering in 1979. Dan is a licensed professional engineer in the state of Texas and a member of the Society of Petroleum Engineers, National Society of Professional Engineers, Texas Society of Professional Engineers, and the International Association of Drilling Contractors Well Control Committee.
Jace Larrison is a Senior Well Control Engineer for Cudd Well Control. Upon graduation, Jace began work for Cudd Pressure Control, now Cudd Energy Services (CES), as a field engineer for snubbing and coiled tubing. Jace has an extensive background in snubbing operations that includes operational soundness with 170K hydraulic rig-assist units as well as all sizes of CES Stand-Alone (HWO) units. Special Service experience includes hot tapping, cryogenic freezing, conventional dry-ice freezing, and valve drilling operations. Jace has well-control operational experience on projects including onshore, inland water, and offshore critical pressure control situations, onshore blowouts, geothermal blowouts, inland water blowouts, high volume H₂S blowouts and numerous other special projects related to well control. Jace has worked in most oil and gas producing areas of the United States as well as many international locations such as Australia, Saudi Arabia, Qatar, Turkmenistan, Kazakhstan, Libya, and Egypt.

Jace is involved in all aspects of well-control engineering, including Blowout Contingency Planning (BCP), well-control equipment inspections, recommendations for special well-control problems, kill design and execution, kick resolution and modeling, and all aspects of field operations. Jace has also taught several industry classes related to well-control subject matter and has been involved in giving numerous presentations at industry-related events such as case histories and well-control topic discussions.

Jace is a graduate of Texas Tech University with a B.S. in Petroleum Engineering. In 2002, he received the Texas Tech SPE outstanding member of the year award and was a TTU SPE officer for the 2002–2003 academic year. Jace is a member of the American Association of Drilling Engineers and the Society of Petroleum Engineers.
Bhavesh Ranka is a Well Control Engineer with Cudd Well Control. He graduated from Mumbai University in India with a degree in Chemical Engineering. He received his M.S. in Natural Gas Engineering from Texas A&M University, Kingsville.

He has been involved in all aspects of well-control engineering including blowout contingency plans, well-control equipment inspection, drilling plan reviews, gas dispersion modeling, and kick simulation. His work in field operations includes blowouts, rig fires, and well-control operations.

Bhavesh has worked offshore and at onshore locations in Texas, Louisiana, Oklahoma, Colorado, New Mexico, Montana, and Wyoming. He has also been involved in well-control training. His special services experiences include hot-tap, valve drilling, and freeze operations.
Throughout the world, two systems of measurement dominate: the English system and the metric system. Today, the United States is one of only a few countries that employ the English system. The English system uses the pound as the unit of weight, the foot as the unit of length, and the gallon as the unit of capacity. In the English system, for example, 1 foot equals 12 inches, 1 yard equals 36 inches, and 1 mile equals 5,280 feet or 1,760 yards.

The metric system uses the gram as the unit of weight, the metre as the unit of length, and the litre as the unit of capacity. In the metric system, 1 metre equals 10 decimetres, 100 centimetres, or 1,000 millimetres. A kilometre equals 1,000 metres. The metric system, unlike the English system, uses a base of 10; thus, it is easy to convert from one unit to another. To convert from one unit to another in the English system, you must memorize or look up the values.

In the late 1970s, the Eleventh General Conference on Weights and Measures described and adopted the Systeme International (SI) d’Unites. Conference participants based the SI system on the metric system and designed it as an international standard of measurement.

The Rotary Drilling Series gives both English and SI units. And because the SI system employs the British spelling of many of the terms, the book follows those spelling rules as well. The unit of length, for example, is metre, not meter. (Note, however, that the unit of weight is gram, not gramme.)

To aid U.S. readers in making and understanding the conversion system, we include the table on the next page.
English-Units-to-SI-Units Conversion Factors

<table>
<thead>
<tr>
<th>Quantity or Property</th>
<th>English Units</th>
<th>Multiply English Units By</th>
<th>To Obtain These SI Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length, depth, or height</td>
<td>inches (in.)</td>
<td>25.4</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td></td>
<td>feet (ft)</td>
<td>0.3048</td>
<td>metres (m)</td>
</tr>
<tr>
<td></td>
<td>yards (yd)</td>
<td>0.9144</td>
<td>metres (m)</td>
</tr>
<tr>
<td></td>
<td>miles (mi)</td>
<td>1609.344</td>
<td>kilometres (km)</td>
</tr>
<tr>
<td>Hole and pipe diameters, bit size</td>
<td>inches (in.)</td>
<td>25.4</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td>Drilling rate</td>
<td>feet per hour (ft/h)</td>
<td>0.3048</td>
<td>metres per hour (m/h)</td>
</tr>
<tr>
<td>Weight on bit</td>
<td>pounds (lb)</td>
<td>0.445</td>
<td>decanewtons (dN)</td>
</tr>
<tr>
<td>Nozzle size</td>
<td>32nds of an inch</td>
<td>0.8</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td></td>
<td>barrels (bbl)</td>
<td>0.159</td>
<td>cubic metres (m³)</td>
</tr>
<tr>
<td></td>
<td>gallons per stroke (gal/stroke)</td>
<td>0.00379</td>
<td>cubic metres per stroke (m³/stroke)</td>
</tr>
<tr>
<td></td>
<td>ounces (oz)</td>
<td>29.57</td>
<td>millilitres (mL)</td>
</tr>
<tr>
<td>Volume</td>
<td>cubic inches (in³)</td>
<td>16.387</td>
<td>cubic centimetres (cm³)</td>
</tr>
<tr>
<td></td>
<td>cubic feet (ft³)</td>
<td>28.3169</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>quarts (qt)</td>
<td>0.9464</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>gallons (gal)</td>
<td>3.785</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>pounds per barrel (lb/bbl)</td>
<td>2.835</td>
<td>kilograms per cubic metre (kg/m³)</td>
</tr>
<tr>
<td></td>
<td>barrels per ton (bbl/tn)</td>
<td>0.475</td>
<td>cubic metres per tonne (m³/tn)</td>
</tr>
<tr>
<td>Pump output and flow rate</td>
<td>gallons per minute (gpm)</td>
<td>0.00379</td>
<td>cubic metres per minute (m³/min)</td>
</tr>
<tr>
<td></td>
<td>gallons per hour (gph)</td>
<td>0.00379</td>
<td>cubic metres per hour (m³/h)</td>
</tr>
<tr>
<td></td>
<td>barrels per stroke (bbl/stroke)</td>
<td>0.159</td>
<td>cubic metres per stroke (m³/stroke)</td>
</tr>
<tr>
<td></td>
<td>barrels per minute (bbl/min)</td>
<td>0.159</td>
<td>cubic metres per minute (m³/min)</td>
</tr>
<tr>
<td>Pressure</td>
<td>pounds per square inch (psi)</td>
<td>6.895</td>
<td>kilopascals (kPa)</td>
</tr>
<tr>
<td></td>
<td>0.006895</td>
<td>megapascals (MPa)</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>degrees Fahrenheit (°F)</td>
<td>(°F - 32) / 1.8</td>
<td>degrees Celsius (°C)</td>
</tr>
<tr>
<td>Thermal gradient</td>
<td>1°F per 60 feet</td>
<td>—</td>
<td>1°C per 33 metres</td>
</tr>
<tr>
<td>Mass (weight)</td>
<td>ounces (oz)</td>
<td>28.35</td>
<td>grams (g)</td>
</tr>
<tr>
<td></td>
<td>pounds (lb)</td>
<td>453.59</td>
<td>grams (g)</td>
</tr>
<tr>
<td></td>
<td>tons (tn)</td>
<td>0.4536</td>
<td>kilograms (kg)</td>
</tr>
<tr>
<td></td>
<td>pounds per foot (lb/ft)</td>
<td>0.9072</td>
<td>kilograms per metre (kg/m)</td>
</tr>
<tr>
<td></td>
<td>pounds per gallon (lb/gal)</td>
<td>119.82</td>
<td>kilograms per cubic metre (kg/m³)</td>
</tr>
<tr>
<td></td>
<td>pounds per cubic foot (lb/ft³)</td>
<td>16.0</td>
<td>kilograms per cubic metre (kg/m³)</td>
</tr>
<tr>
<td>Mud weight</td>
<td>pounds per gallon (ppg)</td>
<td>119.82</td>
<td>kilograms per cubic metre (kg/m³)</td>
</tr>
<tr>
<td></td>
<td>pounds per cubic foot (lb/ft³)</td>
<td>16.0</td>
<td>kilograms per cubic metre (kg/m³)</td>
</tr>
<tr>
<td>Pressure gradient</td>
<td>pounds per square inch per foot (psi/ft)</td>
<td>22.621</td>
<td>kilopascals per metre (kPa/m)</td>
</tr>
<tr>
<td>Funnel viscosity</td>
<td>seconds per quart (s/qt)</td>
<td>1.057</td>
<td>seconds per litre (s/L)</td>
</tr>
<tr>
<td>Yield point</td>
<td>pounds per 100 square feet (lb/100 ft²)</td>
<td>0.48</td>
<td>pascals (Pa)</td>
</tr>
<tr>
<td>Gel strength</td>
<td>pounds per 100 square feet (lb/100 ft²)</td>
<td>0.48</td>
<td>pascals (Pa)</td>
</tr>
<tr>
<td>Filter cake thickness</td>
<td>32nds of an inch</td>
<td>0.8</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td>Power</td>
<td>horsepower (hp)</td>
<td>0.75</td>
<td>kilowatts (kW)</td>
</tr>
<tr>
<td>Area</td>
<td>square inches (in²)</td>
<td>6.45</td>
<td>square centimetres (cm²)</td>
</tr>
<tr>
<td></td>
<td>square feet (ft²)</td>
<td>0.0929</td>
<td>square metres (m²)</td>
</tr>
<tr>
<td></td>
<td>square yards (yd²)</td>
<td>0.8361</td>
<td>square metres (m²)</td>
</tr>
<tr>
<td></td>
<td>square miles (mi²)</td>
<td>2.59</td>
<td>square kilometres (km²)</td>
</tr>
<tr>
<td></td>
<td>acre (ac)</td>
<td>0.40</td>
<td>hectare (ha)</td>
</tr>
<tr>
<td>Drilling line wear</td>
<td>ton-miles (tn•mi)</td>
<td>14.317</td>
<td>megajoules (MJ)</td>
</tr>
<tr>
<td></td>
<td>1.459</td>
<td>tonne-kilometres (t•km)</td>
<td></td>
</tr>
<tr>
<td>Torque</td>
<td>foot-pounds (ft•lb)</td>
<td>1.3558</td>
<td>newton metres (N•m)</td>
</tr>
</tbody>
</table>
Overview

In this chapter:
- The history of the Lucas well at Spindletop
- The probable causes of the blowout at the Lucas well
- The signs of an imminent well kick that can lead to a blowout

On January 10, 1901, the blowout of the Lucas well at Spindletop near Beaumont, Texas, was spectacular and widely publicized. Before the development of blowout preventers (BOP), blowouts were common. They were called gushers if they produced oil.

The Hamill brothers had started drilling the Lucas well three months earlier using a new tool called a rotary drill. Because of their experience using the rotary drill, the Hamills had been hired by Anthony F. Lucas and his partners to come to Beaumont to try drilling through the sand and rock at Spindletop (fig. 1).

A 6-inch (15.24 centimetres) diameter casing was set at 880 feet (268 metres), where it was expected that oil would be found. When no oil was struck, the well was deepened to 1,020 feet (310.9 metres). The final 140 feet (42.67 metres) of drilling proceeded quickly—much faster than had been drilled before. The crew was preparing a new bit with 700 feet (213.4 metres) of drill pipe in the hole when the well started to unload; that is, drilling mud started flowing from the casing.

Figure 1. Anthony Lucas, chief engineer at Spindletop
Formation Pressure

In this chapter:

- Rock formations that can trap oil
- The difference between and causes of formation pressure and hydrostatic pressure
- The causes of formation pressure gradients
- How to calculate hydrostatic pressure
- The differences among normal, abnormal, and subnormal hydrostatic pressures
- The interdependence of formation and hydrostatic pressure in well control
- The measurement and control of circulating pressures caused by drilling fluid and equipment

To classify layers of rock, geologists use a basic subdivision called a formation. A formation is a rock unit that is distinctive and consists of a certain number of rock strata with comparable or similar properties. Therefore, the characteristics of formations result in differences in the way fluids are trapped (fig. 4).

Formation pressure is the force exerted by fluids in an underground rock formation. In drilling operations, formation pressure is measured and recorded using a drilled hole at the depth of the formation with the well’s surface valves completely closed or shut-in. It is sometimes referred to as reservoir pressure. Formation pressure must be carefully monitored and controlled during drilling operations. This is an important factor in blowout prevention.
Abnormal-Pressure Formations

In this chapter:

- Shale compaction as a cause of abnormal formation pressure
- Common signs and detection methods used to locate abnormal formation pressures

Abnormal formation pressure and lost circulation in unconsolidated formations are related problems. Higher than normal formation pressure gradients are encountered at varying depths in many locations. These areas require extra care to be productive and incur additional drilling expense. Costly blowouts can occur when abnormal pressure zones are unexpectedly penetrated.

A rock with pores or open spaces is called porous. Hydrocarbons can occur only in porous reservoir rocks. A porous rock has a measurable quality called porosity. Porosity can be very low, almost zero or, in theory, it can be as high as 55% for extremely well-sorted (same diameter) rock grains. Because most rocks have grains of varying sizes, the practical limit of porosity is usually around 30% for sandstone.
Kick Detection

In this chapter:

- Preliminary events that indicate a kick has been taken
- Well-control equipment used to assess and detect a kick
- Some corrective measures used to stop a kick

Drilling abnormally-pressured formations is known to be hazardous, but many well-control problems also happen in normal formation pressures. Some problems occur while pipe is being moved in or out of the borehole (fig. 22).

When the first stands of pipe are pulled or tripped out, there can be a reduction in bottomhole pressure. This may be caused by the cessation of circulation, and perhaps because of swabbing. If there is any indication of flow, the well should be shut-in and circulated by following standard well-control practices to remove any influx and fill the well with clean drilling fluid. If necessary, the mud weight should be increased before subsequent attempts to trip the pipe.

Sometimes, the preliminary indications of a kick are almost unmistakable. These “positive” indicators include:

- Unexplained mud-pit gain
- Mud flow with the pumps off
- Increase in flow while circulating

In other cases, the indications of a possible kick are ambiguous. These “possible” indicators include:

- A drilling break, a sudden increase in ROP (rate of penetration)
- Decrease in circulating pressure
- Shows of gas, oil, or salt water
Killing a Well Kick
Onshore

In this chapter:

- Steps to control an onshore well kick
- Steps to control a well kick while making a trip
- Various methods, procedures and calculations used to kill a kick
- Killing a well kick with the pipe off the bottom of the borehole
- Common mistakes made in killing a well kick

By taking immediate action, the driller can minimize the size of a kick. Minimizing the size of the kick and can greatly enhance the ability of a drilling crew to handle the kick properly. Quick action can prevent the situation from escalating into a blowout.

When a kick is detected, following the proper sequence of steps is critical to successful emergency control. Depending on the cause, differing methods and procedures may be used to kill a well kick.
Kick Control in Offshore Operations

In this chapter:
- Procedures in controlling a kick offshore from a floating rig
- Diverter BOP systems
- Procedures for well control with a diverter system

The procedures for controlling kicks in offshore drilling from a floating rig are similar to those for onshore as discussed in the previous chapter. Offshore may refer to any body of water, including inland lakes, seas, and rivers. There are additional steps and additional equipment with which crewmembers must be familiar (fig. 36).

Figure 36. A subsea ram-type blowout preventer
In this chapter:

- The dangers of shallow gas formations
- Procedures and calculations required to control kicks with the drill pipe out of the hole
- Well-control problems encountered when stripping into the hole
- Well-control problems encountered when stripping out of the hole
- The procedures and equipment used in snubbing operations
- The procedures used to control lost circulation

Shallow gas formations present a danger because:

- The gas pocket is generally at a depth that allows a potential kick to rapidly unload the mud from the wellbore, and
- Shutting in the well might cause the formation to fracture and the wellbore fluids to broach all the way to the mud line.

Either of these possibilities can result in a serious well-control problem. If a shallow gas kick occurs before enough casing is set, the diverter system will divert the flow away from the rig. For a kick in a shallow gas formation, the offshore crew should take the same steps as those listed for diverting the well in the previous chapter.
Preventer Equipment

In this chapter:

• The main pieces of equipment used in well control and blowout prevention
• The purpose and function of each piece of equipment
• Auxiliary and accessory rig equipment that contributes to well control

The hydrostatic pressure of the drilling fluid column on the formation is the primary barrier in preventing a well from blowing out. When formation pressure is greater than the hydrostatic pressure of the mud column, BOPs and related equipment shut in a well at the surface and serve as a second barrier.

In addition to BOPs, other equipment is used to assist in the control of well pressure. Chokes and choke manifolds allow a controlled removal of the intruded formation fluids from the wellbore. Mud-gas separators help conserve drilling fluids while removing the gas from the drilling fluids and discharging the gas to the atmosphere. Rotating heads permit drilling to continue at an increased ROP in formations with high-pressure/low-volume gas flow.
Preventer Tests and Drills

In this chapter:

- The reasons for BOP pressure testing
- The methods for testing various BOP components

Blowout preventers are emergency equipment. The BOPs are only effective if they:

- Can handle the pressure involved
- Are in good operating condition, and
- Are used correctly

The decision to provide adequate BOPs involves the operating company, the drilling contractor, and the drilling crews. The drillers on the rig are key in the responsibility, but every crewmember should know how to operate the preventer equipment and be alert to the signs of a well kick. Function testing of the preventers and careful pressure testing ensures that everything is in good operating condition and ready for use.

Testing of the BOPs to their rated pressure (if equal to or below the rating of the wellhead) should be conducted to confirm that the equipment will hold under the given test pressure. All preventers and valves, including the choke manifold, should be tested with pressure from the upstream side. Therefore, test pressure is applied to the preventer or valve from the side normally originating the pressure in a kill situation.

Frequent operational checks and regular pressure tests ensure that valves and other components are in good working order. Lubrication, as necessary, ensures easy operation of the equipment in an emergency. Regular maintenance is less expensive than replacement of an item or the possibly drastic consequences incurred when equipment does not function properly.
Index

abnormal formations, 42
abnormal pressure, 28
abnormal-pressure formations
detection of, 28–35
shale compaction, 25–27
accumulators, 128, 132, 133
acoustic travel time, 32
adapter spools, 108
adjustable chokes, 89, 135
American National Standards Institute (ANSI), 109
See also API RP 53 (American Petroleum Institute standards)
annular blowout preventers, 50, 87–90, 115–117
annular space, 13
annulus, 14
ANSI (American National Standards Institute), 109
API RP 53 (American Petroleum Institute standards)
 accumulator pressure level in blowout preventer control unit, 133
 blowout preventer working pressure test schedule, 154
closing systems speed, 128
do flanges and gaskets, 109
for operating equipment, 128
pressure ratings, 109
recommendations and ratings for blowout preventers, 106
for wellhead equipment, 109
working pressures, 136
assemblies
 blowout preventers (BOPs), 104, 111, 112, 113, 128, 150, 154
 choke manifold, 145
 connection to, 106
 high pressure, 108
 skid-mounted, 130
testing, 154
valve, 87
working pressure of, 106, 110–111
associated gas, 73
A-suction, 114
auxiliaries
degassers, 144
inside blowout preventers, 142–143
kelly cock, 140–141
mud-flow indicators/sensors, 149
pit-level indicators and pit-volume recorders, 146–147
pump stroke counter, 148
trip tanks, 145
back-pressure, 18
back-pressure valves, 140
balled up bits, 14
barite, 7
bell nipples, 125–126
bits, 1, 14, 94–95
blanket sands, 10
blind flange, 106
blind rams, 89, 121, 122
BLOWOUT PREVENTION

blowout assemblies
high pressure, 108
working pressure of, 110–111
blowout preventers (BOPs). See also under preventers
 annular, 50, 87–90, 115–117
 auxiliaries, 142–143
 Cameron Type U, 118–119
 capabilities of, 104
 closure of, 41
 components of, 105
 control unit, 133
 dart type, 142–143
 drop type, 142–143
 history of, 1
 hydraulic fluids for operation of, 129
 Hydril-Type GK, 116
 Hydril-Type V, 119–120
 inside (IBOPs), 142–143
 NL Shaffer type, 119–120
 pipe ram, 91–92, 115, 117–122
 stack, 89
blowouts, 1, 3
borehole, 7
bottomhole pressure (BHP), 3, 12, 84
Boyle, Robert, 45
Boyle’s law, 45
bullhead kill method (bullheading), 67–68, 82
bull plug, 106
Cameron Type U ram preventers, 118–119
cap rock, 42
casing and wellheads, 110–114
casing pressure, 46
casings, 1
casing seats, 22
casing shoes, 20, 110–111
cellar, 114
cementing, 20, 110
cementing unit, 89, 94
cement plugs, 148
centrifugal degassers, 138, 144
centrifugal pumps, 18
chloride increases, 31
choke adjustments, 62
choke lines, 106
choke-manifold friction, 66
choke-manifold, 106
choke-manifold friction, 66
chokes. See also constant choke-pressure method
 adjustable, 89, 135
 adjustments, 62
 fittings, 134–135
 manifold assemblies, 55, 134, 145
circulate-and-weight method, 67
circulating pressure, 14–15
circulation pressure, 94
closed in well, 50
closed reservoirs, 10
closing systems, 128
closing time, 128
closing unit pumps, 87
concurrent method, 67
conductivity, 32
conductor pipe, 44, 78, 113, 117
conductor pipe outlet, 125
connection gas, 31
constant choke-pressure method, 73
constant pit-level method, 72
controlling a well kick while making a trip, 51
controlling kick from a floating rig with competent casing set, 79
cross-flow, 98
cup packers, 157–158
cup testers, 157–158
cuttings, 71
dart type inside blowout preventers, 142–143
decrease in circulating pressure, 43–44
degassers, 138, 144
delay timing, 58
density (unit weight), 7, 8
derrickhand, 3
detection of abnormal pressure, 28–35
 chloride increases, 31
 drilling rate changes, 28–29
 electric log data, 32–33
 gas-cut mud, 31
 mud temperature increase, 32
 shale density, 30
 sloughing shale, 30
detection of high formation pressures, 28
d-exponent factor, 29
differential pressure, 28
displacement monitoring, 89
ditches, 125
diverter bop systems, 78
drill collars, 19
drilled show gas, 31, 44
drilled shows, 44
driller’s method, 55–61
drilling break, 3, 28, 42
drilling fluid density, 12
drilling fluids, 7
drilling rate changes, 28–29
drilling spools/flow cross, 114, 122–124
drill pipe. See also blowout preventers (BOPs);
circulation pressure; full-opening safety valves (FOSVs); lost circulation; shut-in
drill pipe pressure (SIDPP); trips
 as a bottomhole pressure gauge, 51–53, 83
 displacement, 19, 92
 fishing operations, 121
 hydrostatic pressure, 13, 44
 out of the hole, 82
pipe ram preventers, 117
pressures, 134
pulling/pulled, 44, 145–146
shearing, 118
 at Spindletop, Texas, 1–3
drill pipe pressure, 12, 44
drill pipe pressure gauge, 62
drill pipe rubbers, 91
drill-stem (full-opening safety) valves (FOSVs), 143
drill stems, 121
drill string, 14, 51–53
drop type inside blowout preventers, 142–143
dynamic kill method, 68
electric log, 28
electric log data, 32–33, 35
detection of abnormal pressure, 32–33
engineer’s method, 62–67
entrained gas, 54
equivalent circulating density (ECD), 78
excessive mud weight, 73
fill-up line connections, 126
final circulating pressure (FCP), 62
fishing operations, 121
flanges and fittings, 106–109
float in drill string, 51–53
flow and choke fittings, 134–135
flow check, 16
flow checks, 41
flow line, 44
flow-line temperatures, 32
fluid pressure, 7
formation fluids, 2
formation fracture, 67
formation fracture and lost circulation, 20–24
formation integrity. See formation fracture and lost circulation
formation pressure
about, 5–6
formation fracture and lost circulation, 20–24
formation pressure gradients, 7–8
hole filling, 17–19
vs. hydrostatic pressure, 11–15
hydrostatic pressure vs., 11–15
monitoring, 6
normal and abnormal pressures, 9–10
pressure surges and swabbing, 15–16
formation pressure gradients, 7–8
formations, 5
formation types and mud loss, 23
fracture pressure, 20
free water, 27
full-opening safety valves (FOSVs), 51, 70, 105, 143

gas behavior and gas-cut mud, 45–47
gas charge, 133
gas-cut mud, 31, 45–47
gaskets, 109
gas migration, 61, 82, 86
gel strength, 14–15
glycol, 129
gradients, 51–53
gravity-flow trip tanks, 145
guide shoes, 110–111
gushers, 1
hanger plugs, 156
hangers, 112
hard shut-in, 79
hard shut-in well, 50
high formation pressure detection, 28
high pressure blowout assemblies, 108
hole in the drill pipe, 94
hook load, 3
hydraulic accumulators, 132
hydraulically-operated valves, 108
hydraulic high-pressure choke manifold, 134
hydraulic rig assist snubbing units, 96
hydraulic workover (HWO) unit, 96–97
Hydril-Type GK blowout preventers, 116
Hydril-Type V ram preventers, 119–120
hydrostatic head, 14
hydrostatic pressure, 2, 7, 8
circulating pressure, 14–15
vs. formation pressure, 11–15
hydrostatic pressure gradient, 8
ideal gas, 45
increase in flow while circulating, 42
induced kicks, 83
initial circulating pressure (ICP), 62
inside blowout preventers (IBOPs)
dart type, 142–143
drop type, 142–143
internal blowout preventers. See inside blowout preventers (IBOPs)
internal diameter (ID), 13
International Association of Drilling Contractors (IADC), 60
jet nozzles, 14
joints. See tool joints
kelly, 41
kelly cocks, 140–141
test sub, 155
kick
causes of, 15
defined, 2
signs of, 4
kick control, offshore operations
 about, 77
 controlling kick from a floating rig with
 competent casing set, 79
 diverter bop systems, 78
 procedure to control the well with a
 diverter system, 79
kick control, special problems, 81–101
kicks with the drill pipe out of the hole, 82–86
 shallow gas formations, 81
 in snubbing operations, 96–99
 stripping into the hole, 86–93
 stripping out of the hole, 94–95
kick detection, 37–48
 decrease in circulating pressure, 43–44
 drilling break, 42
 gas behavior and gas-cut mud, 45–47
 increase in flow while circulating, 42
 mud flow from the well, 41
 pit gain, 39–40
 shows of gas, oil, or salt water, 44
kick indicators, 37–38
kicks with the drill pipe off bottom, 70–71
 reverse circulation, 71
 top kill (volumetric), 70–71
kicks with the drill pipe out of the hole, 82–86
killing a well kick
 about, 49
 bullhead kill method, 67–68
 concurrent method, 67
 controlling a well kick while making a trip, 51
 driller’s method, 55–61
 driller’s method for, 55
 drill pipe as a bottomhole pressure
 gauge, 51–53
 dynamic kill method, 68
 engineer’s method, 62–67
 kicks with drill pipe off bottom, 70–71
mistakes in well control, 72–73
 momentum kill method, 69
 slow pump rate, 54
 steps to control an onshore well kick if on
 bottom while drilling, 50
 wait-and-weight method, 62–67
kill lines, 106, 136
kill sheet, 62
kill-weight mud, 55–56, 66
leak-off test, 20
liners, 18
logs, 28, 32–33, 35
loss zone, 23
lost circulation, 20, 23, 98–99
lost-circulation material, 99
lost returns, 20
lower kelly cock, 140–141
lube-and-bleed method, 70, 82
Lucas Anthony F., 1
make hole, 3
managed pressure drilling (MPD), 127
Marine Riser System and Subsea Blowout
 Preventers (PETEX), 78
master control panels, 128
mistakes in well control
 constant choke-pressure method, 73
 constant pit-level method, 72
 excessive mud weight, 73
 pulling into the casing, 72
momentum kill method, 69
mud, 7, 13–24, 28–29, 32–34, 37–47, 51–59,
 61–62, 65–67
mud flow, 41
mud-flow indicators/sensors, 149
mud-gas separator, 54
mud-handling equipment, 137–139
mud logs, 28, 31
mud loss and formation types, 23
mud pits, 18
mud return flow rate, 42
mud return line, 38
mud riser and fill-up connections, 125–127
mud risers, 125
mud temperature increase, 32
mud-weight
 calculations of, 74–75
 concurrent method, 67
 differential pressure, 25
equivalent, 20
excessive, 73
fluid density, 8, 24
formation pressure control, 22, 53
fracture pressure, 23, 31
kick and, 37
killing a well kick, 50, 70, 82–83
loss of, 47
maximum, 23
mud temperature increase, 32
normalized penetration rate, 29
pressure surging, 15
stripping in procedure, 90, 93
wait-and-weight method, 62–67

naturally-fractured formation, 98
nippled-up connection, 114
nitrogen, 133
NL Shaffer ram blowout preventers, 119–120
nomographs, 90
normalized penetration rate (d-exponent), 29
normal-rate trend, 28
nozzles, 14

offshore, 77
open hole, 83
operating equipment, 128–133
operating pressure control, 56
operating pressure source, 128
operating pressure standards, 133
outer diameter (OD) drill collars, 13
“out-running the well” kills, 69
overbalance, 9
overburden, 10
overburden pressure, 10
overkill, 73
overpressurized formations, 28, 42
oxygen, 133
packers, 117
permeability, 26
permeable rocks, 26
pipe ram blowout preventers, 117–122
pipe rams, 117
pit gain, 3, 39–40
pit level, 40
pit-level change, 17
pit-level indicators, 40
pit-level indicators and pit-volume recorders, 146–147
pit-volume increase, 65
plugged pipe or bit, 94–95
plugs, 94, 106, 148, 156
pores, 26–27
porosity, 25
porous rocks, 25
positive-displacement meters, 18
pounds per gallon (ppg), 8
pounds per square inch (psi), 47
pounds per square inch per foot (psi/ft), 8
power rigs, 128
preliminary procedures for stripping in, 86
pressure, 2
pressure changes, 15
pressure gradient, 7
pressure loss, 13
pressure overbalance, 9
pressure ratings, 106
pressure surges and swabbing, 15–16
pressure surging, 15
preventer equipment, 103–152
about, 103–105
annular blowout preventers, 115–117
auxiliaries, 140–143
casing and wellheads, 110–114
drilling spools/flow cross, 122–124
flanges and fittings, 106–109
flow and choke fittings, 134–135
kill lines, 136
mud-handling equipment, 137–139
mud riser and fill-up connections, 125–127
operating equipment, 128–133
pipe ram blowout preventers, 117–122
pressure ratings, 106
rotating heads, 127–128
preventer operating pumps, 130
preventer tests and drills
about, 153–154
blowout preventer drills, 158–159
cup or packer tests, 157–158
testing on casing, 154–155
testing procedures, 154
testing with a hanger plug, 156
procedure to control the well with a diverter system, 79
pulling into the casing, 72
pump stroke count, 17
pump stroke counters, 148
rams, 87
ram-to-ram stripping, 91–92
ram-type blowout preventers, 115
rate of penetration (ROP), 28
reciprocating pumps, 18

See API RP 53 (American Petroleum Institute standards)
reduced circulating pressure, 65
regulator valves, 87
remote choke panels, 135
remote control panels, 131, 135
reservoir pressure, 2
resistivity, 32
reverse circulation, 71
ring gaskets, 114
ring-joint flanges, 109
roller cone bit, 94
rotary, 41
rotary drills/drilling, 1, 2
rotary tables, 128
rotating heads, 103, 127–128
seismic data, 28
settling pit, 139
shale, 10
shale characteristics, 32
shale compaction, 25–27
shale density, 30
shale shakers, 56
shallow gas formations, 81
shearing
of drill pipe, 118
of tubing, 118
shear rams, 118
short way, 71
show, 44
show gas, 31
show of gas, oil, or salt water, 44
shut-in, 50, 79
shut-in casing pressure (SICP), 53, 55, 65
shut-in drill pipe pressure (SIDPP), 51–53, 65
signs of blowouts, 3, 79
siphons, 139
skid-mounted assemblies, 130
slips, 96, 143
sloughing shale, 30
slow pump rate, 54
snubbing, 71, 82
snubbing operations, 96–99
snubbing units, 89, 96
soft shut-in, 50, 79
soft shut-in well, 50
Spindletop, Texas, 1
squeeze cementing, 20
stack, 89
stand-alone unit, 96, 97
standpipe, 56
stands of pipe, 16
starter heads, 114
stationary slips, 96
steps to control an onshore well kick if on bottom while drilling, 50
stripping in, 71
stripping into the hole
 with annular preventer, 87–90
 preliminary procedures for stripping in, 86
 ram-to-ram stripping, 91–92
 stripping with ram preventers, 91–92
 surface pressure conditions, 86
 volumetric displacement correction for casing pressure, 92–93
stripping out, 91
stripping out of the hole
 hole in the drill pipe, 94
 plugged pipe or bit, 94–95
 stripping with ram preventers, 91–92
strokes per minute (spm), 54
stuck pipe, 61
subsea blowout preventers (BOPs), 77–78
subsea wells, 99
suction pit, 62
surface casing, 110, 117
surface pressure conditions, 86
surge bottles, 88
surging, 15
swab, 158
swabbed shows, 44
swabbing, 15
swivel, 140. See also kelly
targets, 106
tees, 106
test packers, 157–158
test sub, 155
TIW valve, 70
tool joints
 annular blowout preventers (BOPs), 115
 pipetamps, 118, 121
 snubbing operations, 87, 96
 stripping the joint, 87, 91–92, 100
top kill (volumetric), 70–71
total friction losses. See circulation pressure
tour, 54
traveling slips, 96
trip gas, 31
triplex pumps, 18
trip margin, 16
trips, 16
trip shows, 44
trip tanks, 17, 145
true vertical depth (TVD), 7
tubing, 71
 shearing of, 118
 tubing head fittings, 71
unconsolidated formation, 25
underbalanced drilling (UBD), 9, 128
underbalanced wells, 9
underground blowout, 98
upper kelly cock, 140
U-tube, 54
vacuum degassers, 138, 144
variable bore rams (VBRs), 117
vent lines, 78–79, 105, 124, 139, 144
viscosity, 14
volumetric correction, 92
volumetric displacement correction for casing pressure, 92–93
volumetric method, 16
vugular formation, 98
wait-and-weight method, 62–67. See also engineer's method
disadvantages of, 66
warning signs, 79
wellbores, 2
well-control problems, 42
wellheads, 46, 112–113
well pressure, 2
wireline, 94
workover service, 39–40
To obtain additional training materials, contact:

PETEX
THE UNIVERSITY OF TEXAS AT AUSTIN
PETROLEUM EXTENSION SERVICE
10100 Burnet Road, Bldg. 2
Austin, TX 78758
Telephone: 512-471-5940
or 800-687-4132
FAX: 512-471-9410
or 800-687-7839
E-mail: petex@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex

To obtain information about training courses, contact:

PETEX
LEARNING AND ASSESSMENT CENTER
THE UNIVERSITY OF TEXAS
4702 N. Sam Houston Parkway West, Suite 800
Houston, TX 77086
Telephone: 281-397-2440
or 800-687-7052
FAX: 281-397-2441
E-mail: plach@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex