ROTARY DRILLING SERIES

Unit I: The Rig and Its Maintenance
Lesson 1: The Rotary Rig and Its Components
Lesson 2: The Bit
Lesson 3: Drill String and Drill Collars
Lesson 4: Rotary, Kelly, Swivel, Tongs, and Top Drive
Lesson 5: The Blocks and Drilling Line
Lesson 6: The Drawworks and the Compound
Lesson 7: Drilling Fluids, Mud Pumps, and Conditioning Equipment
Lesson 8: Diesel Engines and Electric Power
Lesson 9: The Auxiliaries
Lesson 10: Safety on the Rig

Unit II: Normal Drilling Operations
Lesson 1: Making Hole
Lesson 2: Drilling Fluids
Lesson 3: Drilling a Straight Hole
Lesson 4: Casing and Cementing
Lesson 5: Testing and Completing

Unit III: Nonroutine Operations
Lesson 1: Controlled Directional Drilling
Lesson 2: Open-Hole Fishing
Lesson 3: Blowout Prevention

Unit IV: Man Management and Rig Management

Unit V: Offshore Technology
Lesson 1: Wind, Waves, and Weather
Lesson 2: Spread Mooring Systems
Lesson 3: Buoyancy, Stability, and Trim
Lesson 4: Jacking Systems and Rig Moving Procedures
Lesson 5: Diving and Equipment
Lesson 6: Vessel Inspection and Maintenance
Lesson 7: Helicopter Safety
Lesson 8: Orientation for Offshore Crane Operations
Lesson 9: Life Offshore
Lesson 10: Marine Riser Systems and Subsea Blowout Preventers
Contents

Figures v
Foreword vii
Preface ix
Acknowledgments xi
About the Author xiii
Units of Measurement xiv

Introduction to Directional Drilling 1
The Drilling Mavericks 2
To summarize 6

Directional Wells 7
Basic Well Patterns 7
Applications 9
Well Plan 11
To summarize 18

Directional Surveying 19
Photographic Instruments 22
Magnetic Single-Shot 24
Magnetic Multishot 29
Gyroscopic Multishot 30
True North Reference Surveying 32
Downhole Telemetry 34
Steering Tool 36
Mud-Pulse Telemetry 37
Plotting Survey Results 41
Survey Calculation Methods 44
To summarize 47

Changing Course 49
Deflection Tools 49
Whipstocks 50
Jet Deflection Bits 52
Downhole Motors 53
Orientering the Tool 60
Rotating, Sliding, and Well Tortuosity 62
Rotary Steerables 63
Bottomhole Assemblies 65
Fulcrum Assembly 66
Pendulum Assembly 66
Packed-Hole Assembly 68
Downhole Motor Assembly 68
To summarize 69
<table>
<thead>
<tr>
<th>Chapter Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Applications</td>
<td>71</td>
</tr>
<tr>
<td>Extended Reach Drilling</td>
<td>71</td>
</tr>
<tr>
<td>Multilateral Wells</td>
<td>73</td>
</tr>
<tr>
<td>Horizontal Drilling</td>
<td>75</td>
</tr>
<tr>
<td>Three-Dimensional or Designer Wells</td>
<td>82</td>
</tr>
<tr>
<td>To summarize</td>
<td>83</td>
</tr>
<tr>
<td>Special Problems</td>
<td>85</td>
</tr>
<tr>
<td>Tortuosity</td>
<td>86</td>
</tr>
<tr>
<td>Formation Effect</td>
<td>89</td>
</tr>
<tr>
<td>Hydraulics</td>
<td>90</td>
</tr>
<tr>
<td>Friction</td>
<td>92</td>
</tr>
<tr>
<td>To summarize</td>
<td>93</td>
</tr>
<tr>
<td>In Summary</td>
<td>95</td>
</tr>
<tr>
<td>Appendix</td>
<td>99</td>
</tr>
<tr>
<td>Glossary</td>
<td>105</td>
</tr>
<tr>
<td>Review Questions</td>
<td>119</td>
</tr>
<tr>
<td>Index</td>
<td>125</td>
</tr>
<tr>
<td>Answers</td>
<td>133</td>
</tr>
</tbody>
</table>
About the Author

Jão Luiz Vieira is Global Product Champion for drilling tools of the Sperry Drilling Services global team of Halliburton (2009). He is responsible for introducing and marketing performance-drilling technology, including promoting a new vertical drilling tool, V-Pilot, and the mud motor-powered rotary steerable Geo-Pilot GXT.

Vieira joined Halliburton in 2001 as an account representative for Petrobras directional drilling and MLWD (measurement and logging while drilling) contracts in Brazil. He was later assigned to operations management for Sperry Drilling Services in Brazil and later, to Business Development where he handled accounts for Sperry’s contracts with the international oil companies in Brazil before leading contract efforts for Petrobras in Vitoria. Vieira came to Houston in 2005 as Business Development Manager for the Latin America Region in charge of introducing new technologies in the region. His success positioned him for his current leadership role as global product champion.

Vieira has a degree in Mechanical Engineering from the Universidade Federal do Espírito Santo in Brazil. He immediately joined Petrobras as a petroleum engineer and received training in Petrobras Corporate University in Salvador, Bahia, Brazil. Vieira managed directional drilling efforts for 18 years in northeast Brazil and in the Campos Basin in Macae. He coauthored a book on directional drilling in Brazil and contributed to numerous papers and articles on directional drilling technologies. A seasoned instructor, Vieira has also taught classes on directional drilling to corporate personnel worldwide.
Throughout the world, two systems of measurement dominate: the English system and the metric system. Today, the United States is one of only a few countries that employ the English system.

The English system uses the pound as the unit of weight, the foot as the unit of length, and the gallon as the unit of capacity. In the English system, for example, 1 foot equals 12 inches, 1 yard equals 36 inches, and 1 mile equals 5,280 feet or 1,760 yards.

The metric system uses the gram as the unit of weight, the metre as the unit of length, and the litre as the unit of capacity. In the metric system, 1 metre equals 10 decimetres, 100 centimetres, or 1,000 millimetres. A kilometre equals 1,000 metres. The metric system, unlike the English system, uses a base of 10; thus, it is easy to convert from one unit to another. To convert from one unit to another in the English system, you must memorize or look up the values.

In the late 1970s, the Eleventh General Conference on Weights and Measures described and adopted the Systeme International (SI) d’Unites. Conference participants based the SI system on the metric system and designed it as an international standard of measurement.

The Rotary Drilling Series gives both English and SI units. And because the SI system employs the British spelling of many of the terms, the book follows those spelling rules as well. The unit of length, for example, is metre, not meter. (Note, however, that the unit of weight is gram, not gramme.)

To aid U.S. readers in making and understanding the conversion system, we include the table on the next page.
English-Units-to-SI-Units Conversion Factors

<table>
<thead>
<tr>
<th>Quantity or Property</th>
<th>English Units</th>
<th>Multiply English Units By</th>
<th>To Obtain These SI Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length, depth, or height</td>
<td>inches (in.)</td>
<td>25.4</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td></td>
<td>feet (ft)</td>
<td>0.3048</td>
<td>metres (m)</td>
</tr>
<tr>
<td></td>
<td>yards (yd)</td>
<td>0.9144</td>
<td>metres (m)</td>
</tr>
<tr>
<td></td>
<td>miles (mi)</td>
<td>1609.344</td>
<td>kilometres (km)</td>
</tr>
<tr>
<td>Hole and pipe diameters, bit size</td>
<td>inches (in.)</td>
<td>25.4</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td>Drilling rate</td>
<td>feet per hour (ft/h)</td>
<td>0.3048</td>
<td>metres per hour (m/h)</td>
</tr>
<tr>
<td>Weight on bit</td>
<td>pounds (lb)</td>
<td>0.445</td>
<td>decanewtons (dN)</td>
</tr>
<tr>
<td>Nozzle size</td>
<td>32nds of an inch</td>
<td>0.8</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td></td>
<td>barrels (bbl)</td>
<td>0.159</td>
<td>cubic metres (m³)</td>
</tr>
<tr>
<td></td>
<td>gallons per stroke (gal/stroke)</td>
<td>0.00379</td>
<td>cubic centimetres (cm³)</td>
</tr>
<tr>
<td></td>
<td>ounces (oz)</td>
<td>29.57</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>quarts (qt)</td>
<td>0.9464</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>gallons (gal)</td>
<td>3.7854</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>pounds per barrel (lb/bbl)</td>
<td>0.0686</td>
<td>kilograms per cubic metre (kg/m³)</td>
</tr>
<tr>
<td></td>
<td>barrels per ton (bbl/tn)</td>
<td>0.4735</td>
<td>kilograms per cubic metre (kg/m³)</td>
</tr>
<tr>
<td>Volume</td>
<td>cubic inches (in.³)</td>
<td>16.387</td>
<td>cubic centimetres (cm³)</td>
</tr>
<tr>
<td></td>
<td>cubic feet (ft³)</td>
<td>0.0283</td>
<td>cubic metres (m³)</td>
</tr>
<tr>
<td></td>
<td>quarts (qt)</td>
<td>0.9464</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>gallons (gal)</td>
<td>3.7854</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>pounds per barrel (lb/bbl)</td>
<td>0.0686</td>
<td>kilograms per cubic metre (kg/m³)</td>
</tr>
<tr>
<td>Pressure</td>
<td>pounds per square inch (psi)</td>
<td>6.895</td>
<td>kilopascals (kPa)</td>
</tr>
<tr>
<td></td>
<td>pounds per square foot (lb/ft²)</td>
<td>0.006895</td>
<td>megapascals (MPa)</td>
</tr>
<tr>
<td>Temperature</td>
<td>degrees Fahrenheit (°F)</td>
<td>°F - 32</td>
<td>degrees Celsius (°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Mass (weight)</td>
<td>pounds (lb)</td>
<td>453.59</td>
<td>kilograms (kg)</td>
</tr>
<tr>
<td></td>
<td>tons (tn)</td>
<td>0.9072</td>
<td>tonnes (t)</td>
</tr>
<tr>
<td></td>
<td>ounces (oz)</td>
<td>28.35</td>
<td>grams (g)</td>
</tr>
<tr>
<td></td>
<td>pounds per foot (lb/ft)</td>
<td>1.488</td>
<td>kilograms per metre (kg/m)</td>
</tr>
<tr>
<td>Mud weight</td>
<td>pounds per gallon (ppg)</td>
<td>119.82</td>
<td>kilograms per cubic metre (kg/m³)</td>
</tr>
<tr>
<td></td>
<td>pounds per cubic foot (lb/cf³)</td>
<td>16.0</td>
<td>kilograms per cubic metre (kg/m³)</td>
</tr>
<tr>
<td>Pressure gradient</td>
<td>pounds per square inch (psi) per foot (psi/ft)</td>
<td>22.621</td>
<td>kilopascals per metre (kPa/m)</td>
</tr>
<tr>
<td>Funnel viscosity</td>
<td>seconds per quart (s/qt)</td>
<td>1.057</td>
<td>seconds per litre (s/L)</td>
</tr>
<tr>
<td>Yield point</td>
<td>pounds per 100 square feet (lb/100 ft²)</td>
<td>0.48</td>
<td>pascals (Pa)</td>
</tr>
<tr>
<td>Gel strength</td>
<td>pounds per 100 square feet (lb/100 ft²)</td>
<td>0.48</td>
<td>pascals (Pa)</td>
</tr>
<tr>
<td>Filter cake thickness</td>
<td>32nds of an inch</td>
<td>0.8</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td>Power</td>
<td>horsepower (hp)</td>
<td>0.75</td>
<td>kilowatts (kW)</td>
</tr>
<tr>
<td>Area</td>
<td>square inches (in.²)</td>
<td>6.45</td>
<td>square centimetres (cm²)</td>
</tr>
<tr>
<td></td>
<td>square feet (ft²)</td>
<td>0.0929</td>
<td>square metres (m²)</td>
</tr>
<tr>
<td></td>
<td>square yards (yd²)</td>
<td>0.8361</td>
<td>square metres (m²)</td>
</tr>
<tr>
<td></td>
<td>square miles (mi²)</td>
<td>2.59</td>
<td>square kilometres (km²)</td>
</tr>
<tr>
<td></td>
<td>acre (ac)</td>
<td>0.40</td>
<td>hectare (ha)</td>
</tr>
<tr>
<td>Drilling line wear</td>
<td>ton-miles (tn•mi)</td>
<td>14.317</td>
<td>megajoules (MJ)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.459</td>
<td>tonne-kilometres (t•km)</td>
</tr>
<tr>
<td>Torque</td>
<td>foot-pounds (ft•lb)</td>
<td>1.3558</td>
<td>newton metres (N•m)</td>
</tr>
</tbody>
</table>
Introduction to Directional Drilling

Directional drilling is a special drilling operation used when a well is intentionally curved to reach a bottom location. The well follows an angular line from the surface to the target. These wells are known as deviated wells and are made for several reasons, such as:

- The bottom target might be located under an obstruction such as a building or lake where rigging up over the site is not possible.
- To reach several bottom locations, it might be necessary to drill multiple wells from a fixed place, such as on an offshore platform or an onshore drilling island.
- A section of an existing well might become blocked with fragmented drilling tools, or a well might be drilled in an unproductive part of the reservoir. In this case, the lower part of the well can be plugged in and the well deviated, or kicked off, in another direction.
- Some reservoirs are more efficiently produced by wells drilled at angles of 90 degrees or more. These are known as horizontal wells because of their extreme inclination angle from vertical.

Many techniques can be used to drill directional wells but the general concept remains the same: point the bit in the direction to drill. From the beginning, drillers have devised innovative means to reach hard-to-reach targets. Motivated by the contents of distant reservoirs, drillers have developed various methods of directing holes to bypass obstructions or hit zones in challenging locations. Over time and trials, these methods have become increasingly sophisticated and exact by applying new technologies to improve drilling precision. It is because of this increased precision that these practices have become known as controlled directional drilling—a practice now widely used to drill areas once impossible to reach, and to do so efficiently and economically.
Directional Wells

In this chapter:
• Basic patterns for directional wells
• Various applications of directional drilling
• Influential factors in planning the hole
• How to interpret well structure and slab plots
• Managing the risk of intercepting other wells

Directional drilling has a wide variety of applications. The plan for each hole is tailored to each situation. Reservoir location, surface accessibility, formation hardness, and equipment availability all play roles in planning well trajectory. However, most directional wells follow one of three basic patterns (fig. 5).

Basic Well Patterns

Figure 5. Basic well patterns
Directional Surveying

In this chapter:

- Different types of directional surveys
- Instruments used to measure, record, and transmit data
- Survey results and what they indicate
- Bottomhole calculations and uncertainties

A straight (nondirectional) hole is routinely measured to ensure that drift angle stays within specified limits. In directional drilling, however, both drift angle and direction must be determined at various depths to compare the actual course of the hole with the planned course (fig. 16).

To monitor the hole’s trajectory, the directional driller takes surveys as needed and might use single shots, steering tools, or measurement while drilling (MWD), depending on the type of tools available on the rig. (Each one of these systems will be discussed briefly in this book.) Single-shot surveys can often be completed during routine drilling operations; for instance, just before tripping out for a bit or changing the bottomhole assembly (BHA)—the combination of drill collars, stabilizers, and associated equipment made up just above the bit. Steering tools or MWD systems furnish the directional driller with real-time directional data on the rig floor; that is, they show what is happening downhole during drilling. MWD systems also refer in a more general sense to systems of measuring downhole conditions during routine drilling operations.
In this chapter:

- How deflection tools are used
- Whipstocks and rotary steerable
- Jet deflection bits and downhole motors
- Controlling wellbore deflection
- Significance of bottomhole assemblies

A basic requirement for drilling a directional well is that there is some means of changing the course of the hole. Generally, a driller either uses a specially designed deflection tool or modifies the bottomhole assembly used to drill ahead.

A deflection tool is a drill string device that causes the bit to drill at an angle to the existing hole. There are many different types of deflection tools, ranging from the primitive but rugged whipstock to the state-of-the-art rotary steerable. The directional supervisor's choice depends on:

- Degree of deflection needed
- Formation hardness
- Hole depth
- Temperature
- Presence or absence of casing
- Economics
In this chapter:

- Extended reach and multilateral wells
- Horizontal drilling
- Geosteering with LWD sensors
- Complex well trajectories and designer wells

The Wytch Farm project was the primary stimulus for developing drilling procedures for highly deviated wells. Wytch Farm, the largest onshore oilfield in western Europe, was discovered in 1973 and began producing oil in 1979. At the time, environmental regulations pushed one major operator to drill highly deviated wells from shore to reach offshore targets. As a result, new drilling procedures and deeper comprehension of torque, drag, and stresses actuating in the drill string were developed to make such drilling technically feasible.

The drilling industry developed the concept of extended reach wells (ERW) to accommodate special drilling needs. Such wells required extended reach drilling (ERD) to drill a wellbore in which the final measured depth would be greater than twice the vertical depth (fig. 58).

ERD normally pushes the drill string to its limits; applying advanced torque-and-drag calculations and real-time monitoring is mandatory. Drilling fluid characteristics such as lubricity and yield point are closely controlled to ensure the cuttings carried to the surface avoid high torque and drag that can lead to pipe sticking.
Special Problems

In this chapter:
- The impact of trajectory changes
- Dogleg severity factors
- When the formation deflects the bit
- Hydraulics, friction, and penetration rates

Directional wells are normally more difficult to drill than straight holes. Nearly everything done in routine drilling becomes more complicated when the well has to be drilled at an angle. Examples of special problems that occur in directional drilling:
- More hoisting capacity is often needed to raise and lower the drill string.
- Greater rotary torque is needed to overcome friction.
- Mud and hydraulic system requirements are more critical.
- Stuck pipe and equipment failures are more common.
- Casing is harder to run and cement.
Directional drilling is the discipline of planning and executing well trajectory from the rig site to the reservoir targets. These targets might not be in a vertical line from the rig; therefore, a directional well must be drilled.

A directional driller plans well trajectory and ensures the path is achievable, considering the formations to be drilled, the mechanics associated with bending the drill string, and the limits of the drilling tools being used. Drilling a deviated hole demands trajectory control. This control in action is known as a directional drilling operation, made efficient with advancements in techniques and technologies (fig. 76).

Directional wells are drilled straight to a predetermined depth and then gradually curved. The curvature of each well is carefully planned in advance so the straight, rigid drill stem and casing can follow the curve of the well. Although the curve is gradual, directional wells can change course from vertical to curve at various degrees of angle. Sometimes they run parallel to reservoir boundaries, in which case, they are called horizontal wells.
Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>accelerometers</td>
<td>32–34, 37–38</td>
</tr>
<tr>
<td>Alaska</td>
<td>28</td>
</tr>
<tr>
<td>angle buildup</td>
<td>13–14, 66</td>
</tr>
<tr>
<td>applications</td>
<td>9–10</td>
</tr>
<tr>
<td>at-bit inclination sensor</td>
<td>62</td>
</tr>
<tr>
<td>Austin Chalk reservoir</td>
<td>75</td>
</tr>
<tr>
<td>average angle calculation method</td>
<td>45</td>
</tr>
<tr>
<td>azimuth (AZ)</td>
<td>13–44</td>
</tr>
<tr>
<td>basic well patterns</td>
<td>7–8</td>
</tr>
<tr>
<td>bent housings</td>
<td>58–59, 97</td>
</tr>
<tr>
<td>bent subs</td>
<td>57–59</td>
</tr>
<tr>
<td>bit</td>
<td>1</td>
</tr>
<tr>
<td>bit walk</td>
<td>90</td>
</tr>
<tr>
<td>blowout control</td>
<td>3, 9</td>
</tr>
<tr>
<td>bottomhole assemblies (BHAs)</td>
<td>65</td>
</tr>
<tr>
<td>about</td>
<td></td>
</tr>
<tr>
<td>downhole motor assembly</td>
<td>68</td>
</tr>
<tr>
<td>fulcrum assembly</td>
<td>66</td>
</tr>
<tr>
<td>for horizontal drilling</td>
<td>77</td>
</tr>
<tr>
<td>packed-hole assembly</td>
<td>68</td>
</tr>
<tr>
<td>pendulum assembly</td>
<td>66–67</td>
</tr>
<tr>
<td>surveys taken during changes of</td>
<td>19</td>
</tr>
<tr>
<td>bottomhole locations calculations</td>
<td>45</td>
</tr>
<tr>
<td>bottomhole spacing</td>
<td>8</td>
</tr>
<tr>
<td>bottom out drilling</td>
<td>3, 9</td>
</tr>
<tr>
<td>buckling</td>
<td>78</td>
</tr>
<tr>
<td>building assemblies</td>
<td>66</td>
</tr>
<tr>
<td>buildup rate (BUR)</td>
<td>13–14</td>
</tr>
<tr>
<td>casing</td>
<td>8</td>
</tr>
<tr>
<td>casing whipstock</td>
<td>50–51</td>
</tr>
<tr>
<td>changing course</td>
<td></td>
</tr>
<tr>
<td>bottomhole assemblies</td>
<td>65–69</td>
</tr>
<tr>
<td>deflection tools</td>
<td>49–59</td>
</tr>
<tr>
<td>orienting the tool</td>
<td>60–64</td>
</tr>
<tr>
<td>summary</td>
<td>69</td>
</tr>
<tr>
<td>circulation loss</td>
<td>10</td>
</tr>
<tr>
<td>circulation rate</td>
<td>91</td>
</tr>
<tr>
<td>closure</td>
<td>43</td>
</tr>
<tr>
<td>compasses</td>
<td>28</td>
</tr>
<tr>
<td>continuous guidance tool</td>
<td>35</td>
</tr>
<tr>
<td>controlled directional drilling</td>
<td>1–3</td>
</tr>
<tr>
<td>conversion factors (English units to SI units)</td>
<td>xv</td>
</tr>
<tr>
<td>coordinates E-W (E/W)</td>
<td>44</td>
</tr>
<tr>
<td>coordinates N-S (N/S)</td>
<td>44</td>
</tr>
<tr>
<td>course length</td>
<td>13</td>
</tr>
<tr>
<td>cumulative error</td>
<td>43</td>
</tr>
<tr>
<td>declination</td>
<td>26</td>
</tr>
<tr>
<td>deflection tools</td>
<td></td>
</tr>
<tr>
<td>about</td>
<td>49–50</td>
</tr>
<tr>
<td>downhole motors</td>
<td>53–59</td>
</tr>
<tr>
<td>jet deflection bits</td>
<td>52</td>
</tr>
<tr>
<td>orientation display of</td>
<td>34</td>
</tr>
<tr>
<td>orientation of</td>
<td>60</td>
</tr>
<tr>
<td>selection of</td>
<td>49, 62</td>
</tr>
<tr>
<td>whipstocks</td>
<td>50–51</td>
</tr>
<tr>
<td>density adjustments</td>
<td>91</td>
</tr>
<tr>
<td>departure. See horizontal deviation</td>
<td></td>
</tr>
<tr>
<td>designer wells</td>
<td>82</td>
</tr>
<tr>
<td>deviated holes</td>
<td>95</td>
</tr>
</tbody>
</table>
CONTROLLED DIRECTIONAL DRILLING

deviated wells, 1, 4
deviating a wellbore, 2
de Wardt, John P., 45
dips, 78
directional drillers
 calculation methods used by, 45
 geosteering by, 80, 83
 motor configuration selection, 56
 Ouija Board calculations, 60, 62
 reaction torque control, 58
 responsibilities of, 62
 surveys by, 19, 47
 wellbore accuracy role, 4
 well trajectory planning by, 95
directional drilling
 for offshore reservoirs, 9, 96
 operations, 95
 tools for, 97
 uses of, 96
directional drilling introduction
 about, 1
 drilling mavericks, 2–5
 summary, 6
directional drilling operator, 30
directional drilling service company, 4
directional drilling supervisor
 deflection tools orientation, 60
 responsibilities of, 4–5
 selection of deflection tools, 49
directional surveying
 about, 19–21
 downhole telemetry, 34–40
 photographic instruments, 22–31
 plotting survey results, 41–47
 steps for, 26
 summary, 47
directional surveys, 4
directional wells
 applications, 9–10
 basic well patterns, 7–8
 special problems in, 85
 summary, 18
 well plan, 11–17
DLS. See dogleg severity (DLS)
doglegs, 87
dogleg severity (DLS), 64, 76
dogleg severity (DLS) equations, 86–87
dogleg severity (DLS) factor, 86
downdip drilling, 89
downdip trajectory, 93
downhole motor assembly, 68
downhole motors, 36, 53–59
downhole motors functions, 53
downhole power generators, 38
downhole safety valves (DHSV), 17
downhole telemetry
 about, 34–35
 mud-pulse telemetry, 37–40
 steering tool, 36–37
 true north reference surveying, 32–33
downhole turbines, 56
downlink systems, 64
drift angle, 13–14
drill collars, 25
drilling fluids
 adjusting, 91
 air or gasified, 40
 characteristics of, 71
 flow of, 36
 mud motors, 54, 56
 properties of, in well plan, 11
 turbine power from circulation of, 38
drilling mavericks, 2–5
drill pipe, 22
drill stem, 40
drill string, 22
INDEX

drill string friction, 92
drop assembly, 66
dropoff rate (DOR), 13

Eastman, H. John, 2
electric motor rpm, 30
electromagnetic (EM) telemetry systems, 40
electromagnetic wave propagation, 40
EM systems, 40
extended reach drilling (ERD)
 about, 71–72
 horizontal drilling, 75–81
 multilateral wells, 73–74
extended reach wells (ERW), 71–72

faults, 10
fish, 10
formation dips, 78
formation effect, 89–90
formation hardness, 7
formation pressure control, 91
friction, 62, 90, 92
fulcrum, 66
fulcrum assembly, 66
fulcrum effect, 66–67
gas cap of a reservoir, 10
gas drive pressure, 10
geosteering, 78, 80–81
geosteering models, 78
geosteering software, 81
gosteering the well procedure, 80
grid north, 13
gyrocompass, 30
gyroscopes, 30–31, 35
gyroscopic characteristic, 34
gyroscopic multishot, 30–31
gyroscopic multishot film record, 31
gyroscopic multishot instrument, 29
gyroscopic single-shot instrument, 30
gyro surveys, 30
hard caprock, 10
helical buckling, 78
high-angle control, 92
horizontal deviation, 12–13
horizontal drilling, 75–81
horizontal plan types, 76
horizontal slab plot, 15–16
horizontal structure plot, 14–15
horizontal wells, 76, 95
Huntington Beach, California, 2–3
hydraulics, 90–91
inclination (IN), 44
inclination angle, 1
inclination measurement, 34
inclinometer surveys, 2
Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA), 45
intermediate casing string, 8
intermediate-radius wells, 76–77
isogonic charts, 26–27
jet deflection bits, 52
jetting, 52
junctions, 73–74

key seating, 87
key seats, 88
kicked off well, 1
kickoff point (KOP), 14
laterals, 73
leading the holes, 90
list effects, 59
lobes, 55
logging while drilling (LWD) systems, 40
long-radius wells, 76
lost circulation, 10
Louisiana, 75
lubricity, 71
LWD sensors, 80

magnetic force in magnetometers or compasses, 28
magnetic multishot, 29
magnetic multishot instruments, 29
magnetic north, 26
magnetic reading, 26
magnetic single-shot, 24–28
magnetometers, 28, 35
mathematical models, 45
measured depth (MD), 13, 44
measurement while drilling (MWD), 19
measurement while drilling (MWD) sensors, 97
medium-radius wells, 76–77
minimum curvature calculation method, 45
Mississippi, 75
Monels. See nonmagnetic drill collars (NMDCs)
mud, 3
mud motors, 53–54, 56, 97
mud-pulse systems, 35
mud-pulse telemetry, 37–40
mud-pulse telemetry systems, 37
multilateral well (MLT) architecture, 73–74
multilateral wells, 73–74
multishot instruments, 29
MWD. See measurement while drilling (MWD); mud-pulse telemetry systems

negative mud-pulse MWD system, 39
NMDCs (nonmagnetic drill collars). See nonmagnetic drill collars (NMDCs)

nonmagnetic drill collars (NMDCs), 25, 97
north-seeking gyro. See rate gyro

objective. See targets
offshore reservoirs, 9, 96
oil rustlers, 3
Oklahoma, 2
orientation, 34
orienting the tool about, 60–62
rotary steerables, 63–64
rotating, sliding, and well tortuosity, 62
Ouija Board calculations, 60, 62
packed-hole assembly, 68
pendulum assembly, 66–67
pendulum effect, 66–67
penetration rates, 90
petrophysicists, 80
photographic instruments
about, 22–23
gyroscopic multishot, 30–31
magnetic multishot, 29
magnetic single-shot, 24–28
pilot holes, 78–79
pipe tally, 45
planned well trajectory, 7, 16, 80–81
plan view, 12
plotting survey results
about, 41–44
survey calculation methods, 44–46
plumb bob, 24
point-the-bit rotary steerables, 63
polycrystalline diamond compact (PDC) bits, 56
positive-displacement motors, 54
pull out of hole (POOH) procedure, 62
pulser, 37
push-the-bit rotary steerables, 63
INDEX

quadrant system, 13
radius of curvature calculation method, 45
rate gyro, 34–35
reactive torque, 58
reamed out hole, 50
relief well, 3
reservoir, 1
reservoir exposure, 75
reservoir gas cap, 10
revolutions per minute (rpm$s), 30, 53
roller cone bit, 52
rotary steerable deflection tools, 49
rotary steerable$es, 63–64, 97
rotary steerable tools (TSTs), 63, 72
rotary table, 12
rotating, sliding, and well tortuosity, 62
rotors, 30, 54–55, 58, 72
salt dome overhangs, 8
salt domes, 10
short-radius wells, 76–77
sidetracking equipment, 2
single-shot surveys, 19
sinusoidal buckling, 78
slanthole drilling, 3
sliding, 62
special applications
extended reach drilling, 71–81
summary, 83
three-dimensional or designer wells, 82
special problems
about, 85
formation effect, 89–90
friction, 92
hydraulics, 90–91
summary, 93
tortuosity, 86–88
stabilizers, 66
stages, 55–56
stators, 54
steerable systems, 58
steering tool, 36–37
steering tool downhole assembly, 36
steering tools and mud-pulse systems, 33
steering tools systems, 33
stiff assembly, 90
stiff bottomhole assembly, 67
straight hole, 56
string vibrations, 40
sub, 40
summaries
changing course, 69
directional surveying to, 47
directional wells, 18
introduction to directional drilling to, 6
overall, 95–97
special applications, 83
special problems, 93
surface-readout instrument, 34
survey calculation methods, 44–46
surveying service company, 21
survey plot, 20
survey station plots, 42–43
systematic ellipse model, 45
TAML (Technology Advancement of Multilaterals) classification, 73–74
targets, 1, 12, 95
telemetry, 34
Texas, 3, 75
three-dimensional (3D) (or designer) wells, 82
tie-in or tie-on point, 44
tool communication time, 64
tool face, 34
tool face orientation, 50
torque and drag analysis, 76
tortuosity, 62, 86–88
total depth, 8
trajectory, 20, 62, 64, 76
trajectory calculation, 44–45
trajectory change, 58, 86–87
trajectory control, 41, 45, 62, 95
trajectory corrections, 65
trajectory planning, 7, 16, 80–81
traveling-cylinder diagram, 17
trips, 22
true north, 13
true north reference surveying, 32–33
true readings, 26
true vertical depth (TVD), 12
Type I well (deflected near surface), 8–10
Type II well (intermediate deflection), 8–9
Type III well (deflected at greater depth), 8, 10

uncertainty ellipse, 45–46
undergauge hole, 50
updip drilling, 89
updip trajectory, 93

vertical depth (TVD), 44
vertically fractured reservoirs, 75
vertical section, 12–13
vertical slab plot, 15, 17
viscosity adjustments, 91

wall-stuck condition, 65
wandering, 90
washout, 10
wave-shaped shaft, 55
wellbore, 4
wellbore deflection, 61
well patterns, 7
well plan
 azimuth (AZ) (or direction), 13
 computer-generated trajectory on, 37
 course length, 13
 for deviated well, 12
 downhole safety valves (DHSV), 17
 grid north, 13
 horizontal deviation, 12–13
 horizontal slab plot, 15–16
 horizontal structure plot, 14–15
 influences on, 11
 measured depth (MD), 13
 planned well trajectory, 16
 plan view, 12
 quadrant system, 13
 targets, 12
 traveling-cylinder diagram, 17
 true north, 13
 true vertical depth (TVD), 12
 vertical section, 12–13
 vertical slab plot, 15, 17
well trajectory, 62
whipstock deflection tools, 49
whipstocks, 50–51
windows, 73
wireline, 22
Wolff, Chris J. M., 45
Wytch Farm project, 71
yield point, 71
To obtain additional training materials, contact:

dbex
THE UNIVERSITY OF TEXAS AT AUSTIN
PETROLEUM EXTENSION SERVICE
1 University Station, R8100
Austin, TX 78712-1100
Telephone: 512-471-5940
or 800-687-4132
FAX: 512-471-9410
or 800-687-7839
E-mail: petex@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex

To obtain information about training courses, contact:

PETEX
LEARNING AND ASSESSMENT CENTER
THE UNIVERSITY OF TEXAS
4702 N. Sam Houston Parkway West, Suite 800
Houston, TX 7706
Telephone: 281-397-2440
or 800-687-7052
FAX: 281-397-2441
E-mail: plach@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex