Fundamentals of Petroleum

Fifth Edition

The University of Texas at Austin - Petroleum Extension Service
Contents

Figures

- xi

Tables

- xxviii

Foreword

- xxix

Preface

- xxxi

Acknowledgments

- xxxiii

Units of Measurement

- xxxiv

How to Use This Book

- xxxvi

Introduction

1. **The Demand for Oil**
 - 1
2. **From Past to Present**
 - 2
3. **What Does the Future Hold?**
 - 4

PART 1. Exploration

1. **The Authors**
 - 8

1.1 Petroleum Geology

1. Basic Concepts of Geology
 - 10
2. Plate Tectonics
 - 11
3. Folds
 - 15
4. Faults
 - 18
5. Life on Earth
 - 21
6. Categorizing Rocks
 - 22

Accumulations of Petroleum

1. Origin of Petroleum
 - 25
2. Porosity and Permeability of Oil-Bearing Rocks
 - 27

Migration of Petroleum

1. Traps
 - 30

Reservoir Fluids

1. Water
 - 37
2. Oil
 - 37
3. Natural Gas
 - 38
4. Distribution of the Fluids
 - 39

Reservoir Pressure

1. Normal Pressure
 - 39
2. Abnormal Pressure
 - 41

Summary

 - 42

1.2 Petroleum Exploration

1. Surface Geographical Studies
 - 43
2. Aerial Photographs and Satellite Images
 - 43
3. Oil and Gas Seeps
 - 45
4. Collecting Data
 - 46
5. Private Company Libraries
 - 46
6. Public Agency Records
 - 46
7. Databases
 - 46

Geophysical Surveys

1. Magnetic and Electromagnetic Surveys
 - 48
2. Magnetometer Surveys
 - 48
3. Magnetotellurics
 - 48
4. Gravity Surveys
 - 49
5. Seismic Surveys
 - 50
6. Ocean Bottom Cable Systems
 - 57
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reservoir Development Tools</td>
<td>59</td>
</tr>
<tr>
<td>Well Logs</td>
<td>59</td>
</tr>
<tr>
<td>Sample Logs</td>
<td>62</td>
</tr>
<tr>
<td>Drill Stem Test</td>
<td>64</td>
</tr>
<tr>
<td>Strat Test</td>
<td>64</td>
</tr>
<tr>
<td>Stratigraphic Correlation</td>
<td>65</td>
</tr>
<tr>
<td>Maps</td>
<td>66</td>
</tr>
<tr>
<td>Data, Software, and Modeling Technology</td>
<td>69</td>
</tr>
<tr>
<td>Summary</td>
<td>73</td>
</tr>
<tr>
<td>1.3 Mineral Rights and Leasing</td>
<td>75</td>
</tr>
<tr>
<td>Leasing of Lands</td>
<td>77</td>
</tr>
<tr>
<td>U.S. Federal Government Land</td>
<td>80</td>
</tr>
<tr>
<td>The First Leases</td>
<td>82</td>
</tr>
<tr>
<td>Court Rulings on Oil Migration</td>
<td>83</td>
</tr>
<tr>
<td>Government Regulations</td>
<td>84</td>
</tr>
<tr>
<td>Ownership in the United States</td>
<td>84</td>
</tr>
<tr>
<td>The Language of Leasing</td>
<td>87</td>
</tr>
<tr>
<td>The Mineral Estate</td>
<td>88</td>
</tr>
<tr>
<td>Leasing Privately Owned Lands</td>
<td>90</td>
</tr>
<tr>
<td>Determining Ownership</td>
<td>91</td>
</tr>
<tr>
<td>Clearing the Title</td>
<td>93</td>
</tr>
<tr>
<td>Establishing the Contract</td>
<td>94</td>
</tr>
<tr>
<td>Provisions of the Lease</td>
<td>94</td>
</tr>
<tr>
<td>Executing a Lease</td>
<td>98</td>
</tr>
<tr>
<td>Summary</td>
<td>101</td>
</tr>
<tr>
<td>PART 2. Drilling</td>
<td>103</td>
</tr>
<tr>
<td>The Authors</td>
<td>104</td>
</tr>
<tr>
<td>2.1 Drilling Operations</td>
<td>107</td>
</tr>
<tr>
<td>A New Era in Energy</td>
<td>107</td>
</tr>
<tr>
<td>The 1840s</td>
<td>108</td>
</tr>
<tr>
<td>The 1850s</td>
<td>109</td>
</tr>
<tr>
<td>The Late 1800s</td>
<td>110</td>
</tr>
<tr>
<td>Other Parts of the World</td>
<td>110</td>
</tr>
<tr>
<td>The 1900s and Spindletop</td>
<td>114</td>
</tr>
<tr>
<td>The Power of Cable-Tool Drilling</td>
<td>116</td>
</tr>
<tr>
<td>The Success of Rotary Drilling</td>
<td>118</td>
</tr>
<tr>
<td>Drilling Today</td>
<td>120</td>
</tr>
<tr>
<td>Oilfield Metallurgy</td>
<td>121</td>
</tr>
<tr>
<td>Drilling Personnel and Contracts</td>
<td>127</td>
</tr>
<tr>
<td>Drilling Systems</td>
<td>131</td>
</tr>
<tr>
<td>The Hoisting System</td>
<td>133</td>
</tr>
<tr>
<td>The Rotating System</td>
<td>145</td>
</tr>
<tr>
<td>Drilling Assembly</td>
<td>154</td>
</tr>
<tr>
<td>The Circulating System</td>
<td>158</td>
</tr>
<tr>
<td>The Power System</td>
<td>164</td>
</tr>
<tr>
<td>Drill Site Procedures</td>
<td>169</td>
</tr>
<tr>
<td>Preparing the Drill Site</td>
<td>169</td>
</tr>
<tr>
<td>Rigging Up</td>
<td>172</td>
</tr>
<tr>
<td>Spudding In</td>
<td>173</td>
</tr>
<tr>
<td>Tripping Out</td>
<td>176</td>
</tr>
<tr>
<td>Running Surface Casing</td>
<td>180</td>
</tr>
</tbody>
</table>
Cementing the Casing
Tripping In
Controlling Formation Pressure
Intermediate Casing
Expandable Casing
Drilling to Final Depth
Evaluating Formations
Complete or Abandon
Other Land Operations
After Drilling
Offshore Drilling
A Look Back
Modern Offshore Operations
Mobile Offshore Drilling Units
Offshore Drilling Platforms
Controlled Directional Drilling
Offshore Directional Wells
Onshore Directional Wells
Other Applications
Tools and Techniques
The Use of Mud Density
Managed Pressure Drilling and Density
Unconventional Drilling
Steam-Assisted Gravity Drainage
Air or Gas Drilling
Fishing
Freeing Stuck Pipe
Retrieving Twisted-Off Pipe
Fishing for Junk
Summary

2.2 Well Control
An Out-of-Control Well
First Line of Defense
Wellbore Pressure
Summary

2.3 Drilling Safety
Common Hazards
Preparing the Drill Site
Installing the Rig
Drilling Ahead
Blowouts
Completing the Well
Summary

PART 3. PRODUCTION
The Authors

3.1 Production Practices
The Early Days
Completion
Pumping
Storage and Handling
Well Completion
CONTENTS

Fundamentals of Petroleum

Production Casing and Liners 284
Completion Types 286
Tubing and Packers 290
The Wellhead 296

Initiating Flow 301
Stimulation 302
Explosives 303
Hydraulic Fracturing 304
Acidizing 305

Artificial Lift 307
Beam Pumping 307
Electric Submersible Pumps 309
Subsurface Hydraulic Pumps 310
Progressing Cavity Pumps 311
Gas Lift 311
Plunger Lift 312

Reservoir Drive Mechanisms 313
Depletion Drive 313
Water Drive 315
Gravity Drainage 316
Combination Drives 317

Well Testing 317
Potential or Production Tests 317
Bottomhole Pressure Test 318

Improved Recovery Techniques 318
Waterflooding 320
Immiscible Gas Injection 321
Miscible Gas Injection 321
Chemical Flooding 322
Thermal Recovery 323

Surface Handling of Well Fluids 325
Separating Liquids from Gases 326
Removing Free Water 327
Treating Oilfield Emulsions 328
Types of Emulsion Treaters 330
Handling Natural Gas 332
Storing Crude Oil 339
Oil Sampling 341
Measuring and Testing Oil and Gas 342
LACT Units 344
Gas Sampling 345
Gas Testing 346
Gas Metering 346

Well Service and Workover 349
Service and Workover Equipment 349
Well Servicing and Repair 356
Workover Operations 359

Summary 363

3.2 Remote Production 365

Offshore Production Platforms 365
Offshore Completions 368
Offshore Fluid Handling 370
Artic Production 371
Summary 373
3.3 Production Safety 375
Most Common Hazards 376
Controlling Hazards 379
Summary 381

PART 4. Transportation and Refining 383
The Authors 384
4.1 Transportation 385
Early Methods of Transportation 386
Wagons and Water 387
Rails and Tank Cars 388
The First Oil Pipelines 389
Gas Transmission Pipelines 393
Ships at Sea 395
Tank Trucks 396
Railway Systems 397
Petroleum Products Transported by Rail 397
U.S. Government Regulation 399
Tank Car Design and Manufacture 399
Safety 400
Tank Car Strings and Unit Trains 400
Motor Transportation 402
Types of Vehicles 402
Crude Oil Trucks 403
Refined Products Transport 403
Liquefied Petroleum Gas Transport 405
Government Regulation 405
Marine Transportation 406
Inland Waterways 406
Barges 406
Tugboats 407
Towboats 407
Oceangoing Tankers 408
Supertankers 409
Average-Size Tankers 410
Icebreaking Tankers 411
Natural Gas Tankers 412
Loading and Offloading Facilities 414
Crude Oil Pipelines 415
Field Gathering Systems 417
Pump Station Operation 418
Control of Oil Movements 423
Measurement and Quality Assurance 425
Oil Accounting 425
Products Pipelines 426
Control of Products Movement 427
Batching 428
Other Types of Liquid Pipelines 429
State and Federal Regulations 429
Regulatory Environment 429
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas Pipelines</td>
<td>430</td>
</tr>
<tr>
<td>Modern Transmission Systems</td>
<td>430</td>
</tr>
<tr>
<td>Conditioning and Compressors</td>
<td>432</td>
</tr>
<tr>
<td>Automation</td>
<td>433</td>
</tr>
<tr>
<td>Odorants</td>
<td>434</td>
</tr>
<tr>
<td>Pipeline Construction on Land</td>
<td>434</td>
</tr>
<tr>
<td>Assembling the Spread</td>
<td>435</td>
</tr>
<tr>
<td>Clearing Right-of-way</td>
<td>436</td>
</tr>
<tr>
<td>Ditching</td>
<td>438</td>
</tr>
<tr>
<td>Stringing Pipe</td>
<td>440</td>
</tr>
<tr>
<td>Bending Pipe</td>
<td>441</td>
</tr>
<tr>
<td>Aligning and Welding Pipe</td>
<td>442</td>
</tr>
<tr>
<td>Coating and Wrapping Pipe</td>
<td>443</td>
</tr>
<tr>
<td>Lowering in and Backfilling</td>
<td>444</td>
</tr>
<tr>
<td>Specialty and Tie-In Crews</td>
<td>446</td>
</tr>
<tr>
<td>Cleanup and Restoration</td>
<td>448</td>
</tr>
<tr>
<td>Testing and Commissioning</td>
<td>449</td>
</tr>
<tr>
<td>Offshore Pipeline Construction</td>
<td>449</td>
</tr>
<tr>
<td>Conventional Lay Barges</td>
<td>450</td>
</tr>
<tr>
<td>Bury Barges</td>
<td>453</td>
</tr>
<tr>
<td>Superbarges</td>
<td>454</td>
</tr>
<tr>
<td>Semisubmersible Barges</td>
<td>454</td>
</tr>
<tr>
<td>Reel Vessel</td>
<td>454</td>
</tr>
<tr>
<td>Economics and Safety</td>
<td>456</td>
</tr>
<tr>
<td>Liquefied Natural Gas</td>
<td>458</td>
</tr>
<tr>
<td>History of the LNG Industry</td>
<td>458</td>
</tr>
<tr>
<td>Links of the LNG Chain</td>
<td>462</td>
</tr>
<tr>
<td>Baseload LNG Plant</td>
<td>464</td>
</tr>
<tr>
<td>LNG Receiving Terminals</td>
<td>466</td>
</tr>
<tr>
<td>LNG Ships</td>
<td>467</td>
</tr>
<tr>
<td>Summary</td>
<td>468</td>
</tr>
<tr>
<td>References</td>
<td>469</td>
</tr>
</tbody>
</table>

4.2 Refining and Processing

The Early Days

Structure of Hydrocarbons in Oil and Gas
- Paraffins | 476 |
- Isomers | 478 |
- Aromatics | 478 |
- Naphthenes | 480 |
- Olefins | 480 |
- Other Elements | 480 |

Refining Crude Oil
- Assays | 481 |
- Refining Processes | 483 |

Petrochemicals
- Types of Petrochemicals | 507 |
- A Petrochemical Plant | 509 |

Refining Capacity
- Products Sales and Distribution | 515 |
- Environmental Considerations | 516 |

Summary | 518 |
4.3 Gas Processing
- Recovering NGL Mixtures 520
- Straight Refrigeration 521
- Cryogenic Recovery 522
- Oil Absorption 524
- Dry Bed Adsorption 525
- Fractionation of NGLs 526
- Summary 527

PART 5. The Changing Market
The Authors
530

5.1 Petroleum Economics
- The Economics of Creating New Supplies 533
 - Business Model Overview 533
 - Integrated and Independent Energy Companies 536
 - Investment Decision-Making 539
 - Prospect Generation and Evaluation 545
- Summary 562
- References 563

5.2 Environmental, Health, and Safety Concerns
- U.S. Laws and Regulations 566
- International Laws and Treaties 570
- Exploration and Production Environmental Impacts 571
 - Closed-Loop Drilling System 571
 - Synthetic-Based Drilling Fluid 572
 - Mud Additives from Waste 573
 - Blowouts 574
 - Spills from Tankers 575
 - Prevention 576
 - Cleaning Up the Sea 577
 - Cleaning Up the Shore 579
 - Cleaning Up Shallow Waters 580
 - Pipeline and Transportation Environmental Impacts 580
 - Refining Environmental Impacts 583
 - Detecting Contaminated Water and Soil 587
 - Cleaning Contaminated Soil 587
- From the Environment to the Individual—Health and Safety 590
 - Industry Workplace Safety 591
 - Industry Incidents 591
 - Reducing Injuries 592
 - Organizing a Safety and Health Program 596
 - Proper Training 602
- Summary 604
- References 605

5.3 Energy Options and Policy
- Energy Consumption 609
- Energy Challenges 612
 - Environmental Impact 612
 - Economic Impact 613
 - Security Impact 614
- Analyst Projections 614
Throughout the world, two systems of measurement dominate: the English system and the metric system. Today, the United States is one of only a few countries that employ the English system.

The English system uses the pound as the unit of weight, the foot as the unit of length, and the gallon as the unit of capacity. In the English system, for example, 1 foot equals 12 inches, 1 yard equals 36 inches, and 1 mile equals 5,280 feet or 1,760 yards.

The metric system uses the gram as the unit of weight, the metre as the unit of length, and the litre as the unit of capacity. In the metric system, 1 metre equals 10 decimetres, 100 centimetres, or 1,000 millimetres. A kilometre equals 1,000 metres. The metric system, unlike the English system, uses a base of 10; thus, it is easy to convert from one unit to another. To convert from one unit to another in the English system, you must memorize or look up the values.

In the late 1970s, the Eleventh General Conference on Weights and Measures described and adopted the Systeme International (SI) d’Unites. Conference participants based the SI system on the metric system and designed it as an international standard of measurement.

The Rotary Drilling Series gives both English and SI units. And because the SI system employs the British spelling of many of the terms, the book follows those spelling rules as well. The unit of length, for example, is metre, not meter. (Note, however, that the unit of weight is gram, not gramme.)

To aid U.S. readers in making and understanding the conversion system, we include the table on the next page.
English-Units-to-SI-Units Conversion Factors

<table>
<thead>
<tr>
<th>Quantity or Property</th>
<th>English Units</th>
<th>Multiply English Units By</th>
<th>To Obtain These SI Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length, depth, or height</td>
<td>inches (in.)</td>
<td>25.4</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td></td>
<td>feet (ft)</td>
<td>2.54</td>
<td>centimetres (cm)</td>
</tr>
<tr>
<td></td>
<td>yards (yd)</td>
<td>0.3048</td>
<td>metres (m)</td>
</tr>
<tr>
<td></td>
<td>miles (mi)</td>
<td>0.9144</td>
<td>metres (m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1609.344</td>
<td>metres (m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.61</td>
<td>kilometres (km)</td>
</tr>
<tr>
<td>Hole and pipe diameters, bit size</td>
<td>inches (in.)</td>
<td>25.4</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td>Drilling rate</td>
<td>feet per hour (ft/h)</td>
<td>0.3048</td>
<td>metres per hour (m/h)</td>
</tr>
<tr>
<td>Weight on bit</td>
<td>pounds (lb)</td>
<td>0.445</td>
<td>decanewtons (dN)</td>
</tr>
<tr>
<td>Nozzle size</td>
<td>32nds of an inch</td>
<td>0.8</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>cubic inches (in.³)</td>
<td>16.387</td>
<td>cubic centimetres (cm³)</td>
</tr>
<tr>
<td></td>
<td>cubic feet (ft³)</td>
<td>28.3169</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>quarts (qt)</td>
<td>0.9463</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>gallons (gal)</td>
<td>3.7854</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td>pounds per square inch (psi)</td>
<td>6.895</td>
<td>kilopascals (kPa)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>degrees Fahrenheit (°F)</td>
<td>°F – 32</td>
<td>degrees Celsius (°C)</td>
</tr>
<tr>
<td>Mass (weight)</td>
<td>ounces (oz)</td>
<td>28.35</td>
<td>grams (g)</td>
</tr>
<tr>
<td></td>
<td>pounds (lb)</td>
<td>453.59</td>
<td>grams (g)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mud weight</td>
<td>pounds per gallon (ppg)</td>
<td>119.82</td>
<td>kilograms per cubic metre (kg/m³)</td>
</tr>
<tr>
<td></td>
<td>pounds per cubic foot (lb/ft³)</td>
<td>16.0</td>
<td>kilograms per cubic metre (kg/m³)</td>
</tr>
<tr>
<td>Pressure gradient</td>
<td>pounds per square inch per foot (psi/ft)</td>
<td>22.621</td>
<td>kilopascals per metre (kPa/m)</td>
</tr>
<tr>
<td>Funnel viscosity</td>
<td>seconds per quart (s/qt)</td>
<td>1.057</td>
<td>seconds per litre (s/L)</td>
</tr>
<tr>
<td>Yield point</td>
<td>pounds per 100 square feet (lb/100 ft²)</td>
<td>0.48</td>
<td>pascals (Pa)</td>
</tr>
<tr>
<td>Gel strength</td>
<td>pounds per 100 square feet (lb/100 ft²)</td>
<td>0.48</td>
<td>pascals (Pa)</td>
</tr>
<tr>
<td>Filter cake thickness</td>
<td>32nds of an inch</td>
<td>0.8</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td>Power</td>
<td>horsepower (hp)</td>
<td>0.75</td>
<td>kilowatts (kW)</td>
</tr>
<tr>
<td>Area</td>
<td>square inches (in.²)</td>
<td>6.45</td>
<td>square centimetres (cm²)</td>
</tr>
<tr>
<td></td>
<td>square feet (ft²)</td>
<td>0.0929</td>
<td>square metres (m²)</td>
</tr>
<tr>
<td></td>
<td>square yards (yd²)</td>
<td>0.8361</td>
<td>square metres (m²)</td>
</tr>
<tr>
<td></td>
<td>square miles (mi²)</td>
<td>2.59</td>
<td>square kilometres (km²)</td>
</tr>
<tr>
<td></td>
<td>acre (ac)</td>
<td>0.40</td>
<td>hectares (ha)</td>
</tr>
<tr>
<td>Drilling line wear</td>
<td>ton-miles (tn•mi)</td>
<td>14.317</td>
<td>megajoules (MJ)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torque</td>
<td>foot-pounds (ft•lb)</td>
<td>1.3558</td>
<td>newton metres (N•m)</td>
</tr>
</tbody>
</table>
It is recommended that this book be read in sequence first to absorb the full end-to-end story of petroleum, beginning with geology and ending with alternative energy sources. It can also be used as an ongoing reference for specific information on topics of interest.

- Chapter objectives, callouts, and summaries help highlight major points for readers.
- Hundreds of color images visually support the text to enhance learning.
- An index is included for convenience in looking up topics.
- Italicized terms are defined in *A Dictionary for the Oil and Gas Industry*, 2nd Edition, available as a separate product.
- Two reading formats are available for reader preference: print and e-book.
- A separate online assessment is also available to test learning comprehension. Readers who successfully complete the assessment will receive a Certificate of Completion and Continuing Education Credits (CEUs) that can be useful career advancement tools.
- A companion course aligned with this publication is also offered at the PETEX Houston and West Texas Training Centers and at client locations upon request.

Reader feedback is welcomed so we can continue to refine this publication for the benefit of all users. Please contact us with any corrections or revisions necessary for future editions. As always, PETEX strives to provide quality content to enhance industry workplace performance.

Petroleum Extension Service
The University of Texas at Austin
Global Training Solutions Since 1944
www.utexas.edu/ce/petex
Phone: 800.687.4132
E-mail: petex@www.utexas.edu
THE DEMAND FOR OIL

Oil is used in nearly every aspect of life from fuel for cars, trucks, and planes to plastics, clothing, food additives, and medicines. In fact, it is nearly impossible to find some aspect of modern lives that does not require or depend on oil. Without oil, there would be no global economy. Modern society cannot function without oil.

On average, every person in the world consumes about 195 gallons (738 litres) of oil per year. In the United States, consumption per person is five times that level, while in China it is about half the world average. Although oil is used for nearly everything, it is peoples’ need to be mobile and the desire for more freedom of mobility that are the major forces driving oil demand today. As a result, more than half of oil consumption is used for transportation. Demand in developed countries is maturing, while economic growth in developing countries is dependent on oil as transportation systems and wealth grow.

The need for oil continues to increase. Demand has been rising steadily in nearly all regions of the world for the past 25 years. The demand for oil—the collective needs of the oil industry’s final customers—drives all other aspects of the oil industry. These needs have changed over time and are expected to continue evolving as consumers and policies change. Changes in oil demand in the short and medium term (one to five years) are largely determined by price movements, economic growth, and weather. Over the longer term, demand is determined by end-user investment decisions and government policy.

In the past few years, growth in oil demand has slowed due to the impact of higher prices, and volume demand has fallen in 2008 and 2009 due to the effects of the global economic recession. But as economies around the world recover, so will oil demand. The rate of growth and the characteristics of demand are likely to change in the post-economic recovery.

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Regional Oil Demand</th>
<th>Sector Oil Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>26%</td>
<td>North America</td>
</tr>
<tr>
<td>Oil</td>
<td>37%</td>
<td>South America</td>
</tr>
<tr>
<td>Gas</td>
<td>23%</td>
<td>Europe</td>
</tr>
<tr>
<td>Hydro</td>
<td>6%</td>
<td>Eurasia</td>
</tr>
<tr>
<td>Nuclear</td>
<td>6%</td>
<td>Middle East</td>
</tr>
<tr>
<td>Renewable</td>
<td>1%</td>
<td>Asia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Africa</td>
</tr>
</tbody>
</table>
The history of global oil demand can be divided into three distinct eras:

- **Pre-1973**: Driven by both economic and population growth, world oil demand grew quickly. Rapid industrialization and increasing populations with rising personal incomes combined with cheap abundant oil resulted in a steady rise in global oil demand. The relationships between economic growth, population growth, and oil demand growth were relatively stable.

- **1973 to 1980**: These years were a transition period from the pre-1973 era of cheap oil to a political and price environment characterized by high oil prices, a prevailing view that prices would continue to rise (to safeguard against running out of oil), and policies that would move major economies away from oil.
• **Mid-1980s to present:** Since the early to middle 1980s, oil demand had been in a period of relative stability. Oil prices were low and global economic growth was strong. However, the relationships had changed from previous periods. Trends for oil demand per person were flat, and oil demand per dollar of Gross Domestic Product (GDP) fell at a steady rate during this period.

Over the last 25 years, oil’s importance to the global economy has been gradually declining:

• Oil use per dollar of GDP has declined at a steady rate, regardless of the rate of economic growth.
• Oil use per person worldwide has been stable for 25 years—between 190 and 200 gallons (719 and 757 litres) per person per year. While rising in some emerging markets, use per person has begun to decline in some major markets such as Japan and Germany.

Regardless of the various changes in oil consumption from one country to another or the rate of economic growth in emerging markets compared to developed economies, the stability in per-capita consumption of oil indicates that on average, world oil demand growth is largely driven by population growth. In some emerging market countries, combined population growth and economic growth are causing oil demand to rise, while demand is maturing and even falling in some developed countries. However, worldwide, the amount of oil needed to create $1,000 of economic growth has been declining steadily since the mid-1980s. In other words, the global economy is becoming more efficient in its use of oil, at a rate of about 1.5% per year. In 2010, it takes about 19 gallons (72 litres) of oil to create $1,000 of economic output. By comparison, it took nearly 40 gallons (151 litres) for the same economic output in the early 1970s.
From the early 1980s to about 2005, the price of oil on average was the price needed to work off the spare capacity in the system. This price level encouraged a rise in consumption and, at the same time, discouraged growth in oil production. During this period, events such as hurricanes, cold weather, wars, and accidents that typically impact oil markets had an impact on prices, but these effects were hardly noticed by consumers—at least not in a way that would alter demand patterns in any sustainable manner. Despite relatively low prices and strong economic growth, global oil demand grew at the same rate as population growth.

By 2005, the spare capacity of OPEC—the Organization of Petroleum Exporting Countries—and consequently, the spare capacity of the industry, was essentially zero. Very quickly, oil prices increased to levels unthinkable just a short time before. As demand increased or supply was suddenly perceived to be at risk, prices kept rising. There was no more spare capacity to bring online to meet market demand. As a result, prices shifted to reflect the price level needed to slow down or reduce oil demand. Events, such as hurricanes and political developments, had significant impact on spot (immediate) prices and consumer prices.

The years 2008 and 2009 might well be one of the rare major turning points in the history of oil demand. By 2008, signs of the impact of high oil prices on demand were beginning to materialize. Countries that subsidized consumer oil prices were raising prices, thereby causing demand growth rates to slow. U.S. consumers began to reduce gasoline consumption and air travel. By 2008, global oil demand growth had slowed to zero, and demand in 2009 fell 2.4%—the largest fall in oil demand since 1980—as a result of the global economic recession and very high oil prices in 2008.

As happened in the late 1970s and early 1980s, the oil industry is experiencing a once-in-a-generation level of change in demand for its products. The global energy picture and that of the United States are being reshaped by prices and politics to a degree not seen since the 1970s. Oil’s recent past is unprecedented. Numerous events and developments have occurred in a relatively short period of time. Some individual factors will have significant implications for future oil demand, and taken collectively, impacts could have long-term implications unlike anything experienced in the past. Some examples of recent events and government actions are:

- Hurricanes that severely disrupt U.S. refinery production.
- Oil prices rising to $140 per barrel, causing U.S. retail gasoline prices to exceed $4 per gallon for much of the summer of 2008.
- Vehicle efficiency standards that passed in several of the world’s major oil markets, including the United States, the European Union, Japan, and China, which are set to take effect over the next 10 to 15 years.
• Biofuel mandates and targets that displace oil from transportation fuels by 20% or more in the United States, India, the European Union, and Brazil, which are to be established by 2020. Several other countries have much smaller requirements.

• Regulations that reduce carbon emissions and have further implications for oil use.

It could be that oil demand is entering a new, fourth era. Over the next decade and beyond, oil use per dollar of GDP is likely to decline at a faster rate than during the past 25 years, and oil use per capita could begin to decline. As occurred in the 1970s, over the past few years, governments around the world have begun to enact policies to reduce oil demand. Around the world, major oil importing countries are adjusting their energy and environmental policies to guide countries to lower energy intensity, economic growth, and greater energy security. These actions are driven by two major forces: a concern that oil prices will return to the extreme levels of 2006 to 2008 and damage economic recovery and growth, and the need to reduce greenhouse gas emissions to address global warming.

For the first time since the beginning of the oil age, the cost of consuming oil might be higher than the economic benefit of its use. Governments around the world now agree that global climate change poses a real threat to mankind and must be addressed urgently. With transportation the largest single source of carbon dioxide emissions in the United States and second only to coal worldwide, reducing carbon emissions from transportation is a critical component in the effort to reduce greenhouse gas emissions. Reducing greenhouse gas emissions from oil means using less oil, either through higher efficiency or by using substitutes such as biofuels. Countries worldwide are doing both.

Efforts to reduce oil demand through legislation are now unprecedented in the history of oil use. Government initiatives are also supported by tax incentives and mandates that help ensure goals are met. In addition, as these changes gradually begin to impact overall oil demand in the oil-consuming countries of Japan, China, India, Brazil, and the United States, other countries might adopt similar measures, putting additional pressure on oil use around the world.

<table>
<thead>
<tr>
<th>Pre-1973</th>
<th>1973-1980</th>
<th>Mid-1980s to 2010</th>
<th>2010 and Beyond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing populations</td>
<td>Growth in global demand</td>
<td>Oil demand stabilizing</td>
<td>Unprecedented change</td>
</tr>
<tr>
<td>Rapid industrialization</td>
<td>Rising oil prices</td>
<td>Declining oil prices</td>
<td>Global recession</td>
</tr>
<tr>
<td>Rising personal incomes</td>
<td>Economic movement from oil</td>
<td>Strong economic growth</td>
<td>Impactful policies and events</td>
</tr>
<tr>
<td>Abundant cheap oil</td>
<td>Perceived supply shortage</td>
<td>Emerging energy alternatives</td>
<td>A new era of oil</td>
</tr>
</tbody>
</table>
Past experience is critical in helping us to form the basis for future decisions and plans. The oil industry has an abundance of data and information with which to analyze past oil demand and give insights about the future. But a key question of analysts today remains. Even with good data and analysis available, is the past a good indicator of the future of oil and energy demand? This and other questions will be discussed in the chapters that follow. While future oil demand growth is much less certain now than at nearly any time in the past 25 years, the oil industry and the study of energy markets promises to be more exciting and challenging than it has been in at least a generation.

Kevin J. Lindemer
Independent Energy Research Consultant
Kevin J. Lindemer, LLC

Kevin Lindemer has over twenty-five years of experience in the oil and downstream petroleum industries and is an expert on the global oil industry. He specializes in downstream refining and marketing operations and has worked on consulting and research projects in the energy, biofuels, and downstream oil business worldwide. He holds an MS in Agricultural and Applied Economics and a BS in Plant Pathology with emphasis in economics and chemistry.
PART 1
Exploration
Christopher Zahm
Bureau of Economic Geology
The University of Texas at Austin

Christopher Zahm is a leading expert in fractured reservoir characterization, including the interpretation of structural folds and faults in seismic. He works with both outcrops and subsurface data to build 3D geologic models used by the petroleum industry. Zahm teaches Petroleum Basin Evaluation and conducts research at the University's Reservoir Characterization Research Laboratory. His research focuses on predicting the distribution of faults and fractures in the subsurface to understand how these features influence fluid flow within petroleum reservoirs. Zahm's career includes key former positions at ConocoPhillips, iReservoir, Colorado School of Mines, and as a consultant to several independent oil and gas companies. He holds a BSC in Geology and Geophysics from the University of Wisconsin, an MS in Geology from The University of Texas at Austin, and a PhD in Geology from the Colorado School of Mines.

Dan McCue
Director of Land Management
Calera Corporation

Dan McCue is Director of Land Management for Calera Corporation of Los Gatos, California. Additionally, since 1995, McCue has been an instructor at the PETEX Houston Training Center teaching Aspects of Leasing and Joint Venture Partnerships, both onshore the United States and along the Outer Continental Shelf.

Prior to Calera, McCue served Spinnaker Exploration Company as Senior Landman. From 1998 to 2007, McCue was responsible for Spinnaker's lease acquisitions, negotiating commercial deals, drafting operating, farmout, and production handling agreements, and coordinating all competitor analysis for federal lease sales in both shelf and deepwater Gulf of Mexico.

Following the sale of Spinnaker Exploration to Norske Hydro, McCue joined newly formed Beryl Oil and Gas LP as Vice President of Land in 2007. There he was responsible for creating Beryl's Land Department for the integration of newly acquired Gulf of Mexico assets. In 2009, Beryl was sold to Dynamic Offshore Resources.

McCue has a B.B.A. in Petroleum Land Management from The University of Texas at Austin. He then spent 18 years with Amoco Production Company as a Senior Land Negotiator, assigned to various regions of the United States including Alaska.

Christi Gell
Global Business Development, Earth Modeling
Landmark Graphics, Halliburton

Christi Gell develops and executes sales and growth strategy for DecisionSpace® Earth Modeling. She has also developed and commercialized multi-disciplinary workflow across product lines for Halliburton's Veristim™ Service. Gell has worked in Houston and Kuala Lumpur as the geological and geophysical technologies lead for the Asia Pacific Region and also in Halliburton's Production Enhancement product line. She began her career as an exploration geologist at Marathon Oil Company before joining Landmark Graphics of Halliburton in 2000. She cofounded Halliburton’s Young Professionals in Energy group and published an paper in 2008 on young professionals in the oil and gas industry, published by the Society of Petroleum Engineers. She is active in several industry organizations, including serving on the membership committee of the American Association of Petroleum Geologists. She holds an M.S. in Geology from the University of Houston and a B.S. in Geology from The University of Texas at Austin.
The science of geology deals with the origin, history, and physical structure of the Earth and its life, as recorded in rocks. An understanding of the basic principles of geology is essential to the petroleum industry, because most petroleum is found in underground formations made of rock.

Geologists try to answer such questions as: How old is the Earth? Where did the Earth come from? What is the Earth made of? And how has the Earth changed through time? Geologists study the evidence of events occurring millions of years ago, such as earthquakes, volcanoes, and drifting continents and relate these to similar events happening today. They look for evidence of the locations of ancient rivers, deltas, beaches, and oceans and try to decipher how these features shifted position with time. They also research the composition of rocks in the Earth’s crust. In their intensive analysis of the Earth, geologists also draw on information from many other sciences, such as astronomy, chemistry, physics, and biology.

The petroleum geologist is primarily concerned with rocks that contain oil and gas, particularly rocks that contain enough petroleum to be commercially valuable. The company that drills for oil wants a reasonable chance of making a profit on its eventual sale, factoring in market price, the amount of recoverable petroleum, the expected production rate, and the cost of drilling and producing the well. Therefore, petroleum geologists actually have two jobs:

- They reconstruct the geologic history of an area to find likely locations for petroleum accumulations.
- They find one of these locations and evaluate it to determine whether it contains enough petroleum to be commercially productive.

Among the general population, there is a common misconception of oil reservoirs. Many people think that an oil reservoir is a large, subterranean cave filled with oil or a buried river flowing with crude oil from bank to bank. Nothing could be further from the truth. Yet it is easy to understand how such ideas come about. Even experienced oilfield workers often refer to a reservoir as an oil pool. And because many cities store their drinking water in ponds or lakes also called reservoirs, this term adds to the confusion. In reality, a petroleum reservoir is a rock formation that holds oil and gas, somewhat like a sponge holds water.

In this chapter:
- The basic concepts of geology
- The origin of petroleum
- Types of rock and their formations
- The importance of porosity and permeability
- How reservoir pressure influences flow
In the past, exploring for petroleum was a matter of good luck and guesswork. Drilling near oil or natural gas seeps where hydrocarbons were present on the surface was the most successful hydrocarbon-finding method in the early days of oil exploration. Today, petroleum explorationists use sophisticated technologies and scientific principles and guidelines to find oil and gas. An *explorationist* is a person with extensive geological training whose job it is to search for new sources of hydrocarbons.

Surface and subsurface geological studies drive the discovery of oil and gas. Seismic data, well log data, aerial photographs, satellite images, gravity and magnetic data, and other geological data provide information that help determine where to drill an exploratory well. Specialists examine rock fragments and core samples brought up while drilling the exploratory well and run special tools into the hole to get more information about the formations underground. Examining, correlating, and interpreting this information make it possible for petroleum explorationists to accurately locate subsurface structures that might contain hydrocarbon accumulations worth exploiting.

In relatively unexplored areas, petroleum explorationists study the *topography*—the natural and manmade features on the surface of the land—to derive a conclusion about the character of underground formations and structures largely from what appears on the surface.

Before choosing a site to study, geologists might contend with an unexplored area covering tens of thousands of square miles or kilometres. To narrow this vast territory down to regions small enough for detailed surface and subsurface analyses, geologists might use a combination of aerial and satellite imaging. A series of landscape features that seem unrelated or insignificant to a ground observer might be interpreted quite differently when seen from the air or on a satellite image.

Previously, aerial photography was the only way to examine the land from the air. Aerial photography had some serious disadvantages.
Before a petroleum company can develop oil or gas reserves, it must acquire the legal rights to explore, drill, and produce on the site. Acquiring rights differs from country to country. In most oil-producing nations, mineral resources are owned by the national government and petroleum corporations must negotiate with government representatives to secure contracts for mineral development. The complexity, cost, and, in some cases, instability of these arrangements can be significant.

Governments worldwide frequently section their lands into smaller areas called licenses, or leases. Governments regularly offer licenses or leases to oil companies on certain terms so the companies may begin exploring, developing, and producing oil and gas located under the land. The terms and conditions of these licenses vary widely around the globe (fig. 1-3.1). When the licensing process is government-centered, it can be very bureaucratic and cause delays in parts of the process that can take years to resolve.

In most countries, governments or government rulers own all rights to minerals in the land or under waters (fig. 1-3.2). In other words, the state or national governments own all mineral rights including petroleum. Companies with the capital and expertise will negotiate contracts with representatives of the government. Frequently, the host country retains controlling interest throughout exploration and development. The agreements between a host country and the petroleum companies, many of which are also state or nationally owned, can be extremely complex.

For example, in the United Kingdom, the Queen has rights to extract minerals from all lands in the country, including those located offshore. This means that owners of surface land—whether land under a house or farmland—have no rights regarding mineral ownership.

Although much of the land and mineral wealth belong to state and federal governments in the United States, vast amounts of land—about two-thirds of U.S. onshore territory—belong to private individuals. This means that companies wanting to exploit domestic oil and gas reserves must acquire the rights to do so from private citizens. The legal instrument used to transfer these rights from both private and public ownership to a petroleum company is an oil and gas lease, which is another form of a license.
PART 2
Drilling
The Authors

DRILLING

Fred Florence
Product Champion for Drilling Automation and Optimization
National Oilwell Varco

Fred Florence has over 30 years of industry experience including managing deepwater semisubmersibles, jackup rigs, and drillships for land, slim-hole, and helicopter operations. He currently leads a team to ensure machine controls are compatible with each other and with newly developed drilling models. Prior to joining NOV, Florence worked for Sedco-Forex, now Transocean, where he held various positions in engineering and operations. He is a member of the Society of Petroleum Engineers and serves on the steering committee of the new Drilling Systems Automation Technical Section formed to promote an industry-wide effort to develop and implement automation tools to improve drilling processes. He holds a B.S. in Electrical Engineering from Southern Methodist University, an M.A. in International Management, and an M.B.A. in Marketing from the University of Texas at Dallas.

METALLURGY

John Hadjioannou
Laboratory Director,
EPI Testing Group
Engineering Partners, Inc.

John Hadjioannou specializes in forensic engineering and failure analysis. As a mechanical engineer, Hadjioannou oversees laboratory activities for a broad range of testing, from metallurgical and mechanical testing to failure analysis and corrosion testing. His expertise covers micro and macro fractography to ascertain failure modes and corrosion mechanisms that cause failures of metals and coatings. He has key experience using engineering analyses, such as finite element analysis, to design products and parts when investigating failures. Hadjioannou holds a B.S.M.E. from Southern Methodist University and is a member of American Society of Mechanical Engineers, American Society of Metals International, and American Society for Testing and Materials International. Hadjioannou also serves as an instructor for the Petroleum Extension Service (PETEX) Houston Training Center where he teaches a course on pipeline mainline materials of construction.

MWD AND LWD

John Rasmus
Advisor, Reservoir Characterization
Schlumberger

John Rasmus specializes in Schlumberger’s logging while drilling (LWD) product line. His current duties include field and client support of LWD interpretation, resistivity and nuclear interpretation support, and special projects. He has held various interpretation development positions, developing new and innovative interpretation techniques for secondary porosity in carbonates, geosteering of horizontal wells, geopressure quantification in undercompacted shales, and downhole motor optimization. Rasmus holds a B.S. in Mechanical Engineering from Iowa State University, and an M.S. in Petroleum Engineering from the University of Houston. He is a member of the Society of Petrophysicists and Well Log Analysts, Society of Petroleum Engineers, American Association of Petroleum Geologists. In addition, he is a registered professional petroleum engineer in Texas as well as a registered professional geoscientist.

Adam Cook
Mechanical Engineer,
EPI Testing Group
Engineering Partners, Inc.

Adam Cook is a mechanical engineer trained in forensic engineering, finite element analysis and solid modeling for design and failure analysis. He has experience in the use of scanning electron microscope to evaluate fracture morphologies. At EPI, Cook provides support to principle engineers in forensic and metallurgical projects. Prior to his current position, he served as a certified Operations Engineer for Mission Control Emergency Power Plant at National Aeronautic Space Administration Johnson Space Center. He holds a B.S. in Mechanical Engineering from the University of Kentucky and is a member of the American Society of Mechanical Engineers, the American Society of Materials, and the American Institute of Aeronautics and Astronautics.
CONTROLED DIRECTIONAL DRILLING

João Luiz Vieira
Global Product Champion for Drilling Tools
Sperry Drilling Services, Halliburton

João Luiz Vieira is responsible for introducing and marketing performance-drilling technology, including promoting a new vertical drilling tool, V-Pilot, and the mud motor-powered rotary steerable Geo-Pilot GXT. He managed directional drilling efforts for 18 years in northeast Brazil and in the Campos Basin in Macae. Vieira came to Houston in 2005 as Business Development Manager for the Latin America Region in charge of introducing new technologies in the region. He has an M.S. in Mechanical Engineering from the Universidade Federal do Espirito Santo and received training at Petrobras Corporate University in Salvador. He authored the book, Controlled Directional Drilling, 2nd edition, published by PETEX, and has coauthored a book on directional drilling in Brazil. In addition, Vieira has contributed to numerous papers and articles on directional drilling technologies and is a seasoned instructor, delivering classes on directional drilling to corporate personnel worldwide.

MUD DENSITY

Bill Rehm
Independent Drilling Consultant
Far East Energy

Bill Rehm’s expertise focuses on issues surrounding well pressure and improving safety in drilling well control. He began his career at Dresser Industries developing well control and pressure measurement from electric logs. He wrote the first manual on well control accepted by the U.S. Minerals Management Service, and throughout his career, has contributed to some of the most significant technological advancements in recent history including the development of directional drilling, coiled tubing, underbalanced drilling, and high-pressure drilling operations. Rehm was honored in 2009 as recipient of the Legends in Drilling Award presented by the Journal of Petroleum Technology. He has authored several books, including Practical Underbalanced Drilling and Workover, published by PETEX, and has contributed content to other PETEX drilling publications. He is a current member of the PETEX Advisory Board.

SAGD

Jerry Haston
Drilling Engineer
Independent Drilling Consultant

Jerry Haston has more than 35 years of experience in all aspects of drilling and completion activities including mud engineering, drilling engineering, training, well control, supervision, and management in the United States and globally. In 1977, Haston started his consulting business, providing well-site supervision, preparing well plans, and writing and teaching training courses. He began his career with Seis-Tech Exploration and was assigned to Alaska. He then worked as a mud logger for drilling operations in south Texas before joining Sun Oil Company as a geologist locating new drill sites in west Texas. Haston later became a field engineer for Dresser Industries serving Magcobar in the U.S. Rocky Mountains. His roles grew to include management, operations, training, and technical writing. He has a B.S. in Geology from the University of Oklahoma and is an active member of the Society of Petroleum Engineers. Haston also teaches classes on drilling technology for PETEX at its Houston Training Center and for PETEX programs at client sites.

FISHING

Dale Arceneaux
Fishing Tool
Senior Tech Representative
Energy Fishing and Rental Services

Dale Arceneaux has over 45 years of experience working in the oil industry specializing in fishing and downhole intervention. He has held key positions at Tri-State Oil Tools, Wilson Downhole, Petro-Hamco-Enterra/Weatherford, QTS Fishing and Rental, Deltide Fishing and Rental, and Key Energy. He instructs classes on fishing technologies for PETEX at the Houston Training Center.
WELL CONTROL
Steve Vorenkamp
Training Director
Wild Well Control, Inc.

Vorenkamp has 35 years of oil industry experience specializing in pressure detection and target drilling. He currently directs training for Wild Well Control, Inc., a well-established, globally recognized well control company whose training division operates schools for the International Association of Drilling Contractors and the American Petroleum Institute. Vorenkamp’s extensive background includes previous positions serving as Manager of WCS Houston for Cudd Pressure Control, President and COO of The Superior Logging Company, Inc.; owner of VOSCON Inc., a directional consulting company, and the Dallas District Manager for Schlumberger. He holds a B.A. in Business Management from Tulane University at New Orleans and a B.S. in Earth Science from the University of New Orleans. Vorenkamp also instructs classes on well control for PETEX at the Houston Training Center and is a member of the PETEX Advisory Board.

DRILLING SAFETY
Jim Johnstone
President and Co-founder
Contek Solutions LLC

Jim Johnstone, a 30-year veteran of the oil and gas business, has worked with various companies to implement management systems and set up exemplary safety programs. He has led process hazard reviews, implemented behavioral-based training programs, conducted safety training, led safety compliance initiatives and investigated incidents. Johnstone began his career with ARCO (now BP) and later became responsible for all its process safety and support of environmental health and safety regulatory compliance for worldwide operations. He has participated in numerous technical committees and authored technical content, including safety publications for the American Petroleum Institute. He holds a B.S. in Mechanical Engineering from Washington State University and a Certified Safety Professional certificate from the Board of Certified Safety Professionals. Johnstone is a member of the Society of Petroleum Engineers, American Society of Safety Engineers, and American Society of Mechanical Engineers.
Once the exploration geologists and geophysicists have obtained and analyzed data for the prospective site, the landman has secured a lease, and drilling permits and other preliminary papers are in order, the company turns its attention to drilling. To understand the complex science and art of drilling for oil and gas, it is important to take a look back at the history of drilling for oil, beginning at the start of the Industrial Revolution.

In the 1800s, workers wanted a better way to illuminate their homes when they returned from labor in factories. In response to this demand, companies began making oil lamps that burned sperm whale oil, which provided a clean, nearly odorless flame that emitted bright light. Unfortunately, the high demand for whale oil resulted in scarcity and near extinction of the whales sacrificed to produce it. Whale oil became so costly that only the wealthy could afford it. An affordable and plentiful replacement for whale oil became necessary. At the same time, factories also demanded reliable lighting as well as good quality lubricants to run steam-powered machines to keep industry churning. Fortunately, an oily substance was noticed seeping from the ground at locations around the world, and the energy landscape changed.

A NEW ERA
IN ENERGY
In this chapter:
- Definition of well control
- Crewmember roles in controlling a well
- Significance of wellbore pressure
- Process of shutting in a well
- Early detection signs and warnings

Well control has been a critical component of operational awareness in oilfields for as long as wells have been drilled. A common example of a well that is out of control is Colonel Drake’s historic well in Titusville, Pennsylvania, drilled in 1859. The explosion of oil at the surface of this well is classified as an unscheduled event. Today, such events are relatively rare and can be prevented due to proper planning, training, and communication.

A well is out of control when reservoir gas or fluids are flowing in a way that cannot be regulated or stopped. A well in an underbalanced condition can cause an unrecognized influx of either gas or fluids—or both—that has reached critical limits, beyond what normal operations can handle or contain (see section on The Use of Mud Density in Part 2, Chapter 2.1: Drilling Operations). This type of situation can cause a dramatic release to the surface, called a blowout, and present serious dangers to workers and resources (fig. 2-2.1).
Drilling rigs contain many hazards (fig. 2-3.1). The very nature of rotating machinery—engines, pumps, drawworks—and electrical equipment, confined spaces, chemicals, elevated work surfaces, and extreme noise creates serious hazards for workers. Of particular concern is the high pressure associated with circulating drilling mud. Workers must always be on guard for changing situations, particularly those that might lead to a blowout (discussed in Chapter 2.2. Well Control). Offshore rigs present additional hazards due to the harsh and remote aspects of deepwater marine environments.

Figure 2-3.1. Drilling rigs present potential hazards for all workers on site. Every worker must be thoroughly trained in the specific skills and requirements of their job to ensure safe operations.
PART 3

Production
The Authors

PRODUCTION PRACTICES
Paul Bommer
Senior Lecturer, Petroleum and Geosystems Engineering
The University of Texas at Austin
Paul Bommer, university instructor and co-owner of Bommer Engineering Company, has spent over 25 years in industry as an oil and gas operator and consultant in Texas and other parts of the United States. A third-generation oil man, Bommer joined the faculty of The University of Texas at Austin in 2004 and teaches courses in drilling, production, artificial lift, and facilities. His many years in private practice involved specializing in drilling and production operations and oil and gas appraisals. Bommer has published articles on solution mining, beam pump design, and well log analysis. He is the author of the best-selling book, Primer of Oilwell Drilling, 7th edition, published by PETEX. He has served as an instructor in petroleum-related courses at The University of Texas at Austin, the University of Houston at Victoria, and at Bee County Community College. Bommer is a Registered Professional Engineer in the State of Texas, a member of the Society of Petroleum Engineers and the American Petroleum Institute, and a member of the PETEX Advisory Board. He received his B.S., M.S., and Ph.D. degrees in Petroleum Engineering, all from The University of Texas at Austin.

PRODUCTION SAFETY
Jim Johnstone
President and Co-founder
Contek Solutions LLC
Jim Johnstone, a 30-year veteran of the oil and gas business, has worked with various companies to implement management systems and set up exemplary safety programs. He has led process hazard reviews, implemented behavioral-based training programs, conducted safety training, led safety compliance initiatives and investigated incidents. Johnstone began his career with ARCO (now BP) and later became responsible for all its process safety and support of environmental health and safety regulatory compliance for worldwide operations. He has participated in numerous technical committees and authored technical content, including safety publications for the American Petroleum Institute. He holds a B.S. in Mechanical Engineering from Washington State University and a Certified Safety Professional certificate from the Board of Certified Safety Professionals. Johnstone is a member of the Society of Petroleum Engineers, American Society of Safety Engineers, and American Society of Mechanical Engineers.
In this chapter:
- Completing the well for production to begin
- Wellhead equipment that controls fluid flow
- Fluid pressure and initiating flow
- Artificial methods of lifting fluids
- Mechanisms that drive fluids from the reservoir
- Methods of handling well fluids on the surface
- Well servicing and workover operations

In the petroleum industry, production is the phase of operation that deals with bringing well fluids to the surface and preparing them for transport to the refinery or processing plant. Production begins after drilling is finished and the borehole is carefully evaluated and determined to be economically productive. On the other hand, a borehole judged to be economically unproductive is plugged and abandoned.

Production is a combination of these operations:
- Preparing the borehole for production
- Bringing fluids to the surface
- Separating into oil, gas, and water streams that are measured for quantity and quality

For boreholes drilled to economically productive reservoirs, the first step is to complete the well—that is, to perform operations necessary to start the well fluids flowing to the surface. Routine maintenance operations are expected. Servicing such as replacing worn or malfunctioning equipment is standard during the well’s producing life. Later, more extensive repairs, known as workovers, might be necessary to maintain the flow of oil and gas.

Well fluids, usually a mixture of oil, gas, and water, must be separated when they reach the surface. Water must be disposed of and equipment installed to treat, measure, and test the oil and gas before transporting them from the well site.

Detailed discussions on these concepts follow in this order: completion, fluid flow, reservoir drive mechanisms, improved recovery, surface handling, well servicing, and remote production environments.
In this chapter:

- Producing wells offshore
- Completing wells in deep waters
- Special fluid-handling requirements
- Submerged production systems
- Permafrost considerations

Hydrocarbons produced from offshore and Arctic wells require the same general types of completions and surface separation and handling as land wells. The main differences are due to the remoteness of the locations and the special challenges of the environments.

If the ocean water depth is shallow enough to allow construction of a drilling platform, and if one or more development wells are drilled and production takes over as the main activity then the drilling platform will also become a production platform (fig. 3-2.1). The operator sometimes removes the drilling rig or allows it to remain on the platform to service the producing wells. Some platforms are designed so that a mobile offshore jackup drilling rig can set up over the platform to drill and complete a well through the platform or through a single well caisson (fig. 3-2.2)

Figure. 3-2.1. This self-contained platform, the Hibernia, houses all the drilling and production equipment and facilities for the crew. The Hibernia is located off the coast of Newfoundland and is the world’s largest oil platform in terms of weight.
In this chapter:

- Safety in all aspects of the production process
- Hazards that commonly occur in production
- Factors in monitoring process conditions
- Common production hazards

Production safety encompasses a wide variety of jobs and functions spanning from when the well is first brought into production to when the well is abandoned and the facilities are removed. Production workers need to understand how to work safely when conducting various jobs on a production site (fig. 3-3.1). During the course of each day, production workers are frequently called upon to drive to a well site or production facility, diagnose equipment or well problems, make repairs to wells and equipment, adjust process settings, and ensure that safety equipment is working properly. Each task has its own inherent safety hazards and particular safety requirements.

Figure 3-3.1. Production worker controlling flow of fluids with valve
PART 4
Transportation and Refining
The Authors

TRANSPORTATION/PIPELINES

Larry Bennington
Owner and Pipeline Consultant
Milepost Consulting

Larry Bennington has over 35 years of experience dealing with all aspects of pipelining. He currently provides consulting services to the pipeline and related industries in areas of operations, maintenance, engineering, construction, planning, regulatory compliance and litigation support. His expertise includes pipeline operations, maintenance, planning, project engineering, technical services, and engineering services including construction management, right-of-way, and records management. He has held key positions at Amoco Pipeline Company and American Oil Company and is a Registered Professional Engineer. Bennington holds a B.S.C.E. in Civil Engineering and an M.B.A. from Kansas State University. He is a current pipeline instructor at the PETEX Houston Training Center and for special PETEX programs at client locations.

LIQUEFIED NATURAL GAS

Stanley Huang
LNG Process Engineer
Chevron Corporation

Stanley Huang specializes in cryogenic applications, particularly in liquefied natural gas and gas processing. For nearly 15 years, he has worked on numerous projects devoted to LNG baseload plants and receiving terminals and has contributed to process and technology improvements through more than 20 publications and corporate reports. Before joining Chevron, Huang worked for IPSI (an affiliate of Bechtel) and KBR. He began his career with Exxon Research and Engineering Company and later joined D.B. Robinson and Associates in Canada. An expert in thermodynamics, Huang has given seminars on thermodynamic applications and, in recent years, has presented on gas processing and the LNG industry at meetings of the Association of Chinese American Professionals and at the Universities of Houston and Wyoming. He also instructs classes on LNG processes at the PETEX Houston Training Center. Huang received a B.S. from National Taiwan University and an M.S. and a Ph.D. in Chemical Engineering and an M.S. in Physics from Purdue University.

REFINING AND GAS PROCESSING

Stephen Long
Technology Advisor
Valero Energy Corporation

Stephen Long has 35 years of experience in the refining and petrochemical industry working in operating, engineering, and consulting companies and as an independent contractor. He is currently Technology Advisor in Strategic Sourcing for Valero Energy Corporation in San Antonio, Texas.

Prior to Valero, Long served the refining and petrochemical industry as an independent consultant associated with several company expansion projects. He spent 18 years devoted to the operating side of the industry as a refinery process engineer, plant process engineer, technical manager, operations manager, and refinery manager. His operations experience included virtually all types of refinery units.

Long's background includes several years with Stone and Webster focused on technology and process activities. In 2001, Long became President and Director of Energy Management Corporation in Houston, Texas, providing operations and maintenance services for a small niche refinery overseas. He served as General Director and an owner of Azov Oil Company from 2002 to 2004.
Transporting and distributing petroleum products and natural gas from oilfields to refining and processing plants requires a complex transportation system (fig. 4-1.1). Tank trucks, rail cars, marine transportation, and crude oil, products, and gas transmission pipelines each have an important role in the oil and gas transportation industry.

Crude oil was first transported in wooden barrels carried by horse-drawn wagons to nearby streams. As consumer demand for petroleum grew, so did the methods of transportation. Today, millions of barrels of crude oil, gasoline, fuel oils, and other petroleum products, along with billions of cubic feet of natural gas, are moved daily from the wellhead to refineries. They are also moved from refineries to product terminals, from one refinery to another, from offshore to onshore, and from continent to continent to reach consumers.
Collected crude oil and natural gas are of little use in their raw state. Their value lies in what is created from them—fuels, lubricating oils, waxes, asphalt, and petrochemicals.

To passersby, crude oil refineries and natural gas plants look like a strange conglomeration of towers and walls and a maze of pipes and tanks (fig. 4-2.1). In reality, a refinery is an organized and coordinated arrangement of equipment that separates the components in crude oil and gas and produces physical and chemical changes in them. These changes create salable products of the quality and quantity consumers want. Crude oil refineries and natural gas plants also include facilities to store crude oil and products and maintain equipment.

Figure 4-2.1. A refinery is an organized and coordinated arrangement of processes (called units) linked together with miles of pipe carrying crude oil in and products out. Pictured: Valero Corporation’s Jean Gaulin Refinery in Quebec, Canada, has a capacity of 215,000 barrels per day.
As late as the 1930s, natural gas leaving the wellhead had to reach a market nearby or else be burned off, or flared. Huge amounts of natural gas have been flared in the United States. Flaring is still a common practice in remotely located oilfields when gas cannot be reinjected into the reservoir for gas lift or used locally as fuel. With the advent of gas pipelines (commonly called transmission lines), gas transport trucks, and field processing facilities for gas, gas production in the United States and elsewhere has become an industry in itself.

Natural gas straight from the well is processed in the field. The processing includes the removal of water, impurities, and excess hydrocarbon liquids as required by the sales contract. It also includes the control of delivery pressure. When it is economical to gather the gas from several wells to a central point, an operator may build a gas processing plant to do the same work as separate facilities next to each well would do. Often, these gas plants dehydrate the gas and remove hydrogen sulfide. In addition, they generally separate hydrocarbon mixtures or individual hydrocarbons from natural gas and recover sulfur and carbon dioxide.

In general, the larger the gas processing plant, the more economical it is to operate (fig. 4-3.1). However, large plants must be near fields that provide large volumes of natural gas. In recent years, manufacturers have developed portable skid-mounted plants to provide efficient, relatively inexpensive gas processing for smaller fields.

In addition, refineries have facilities to process the gases resulting from crude oil distillation, cracking, and reforming. Refinery gas processing provides fuel gas (methane, ethane, and ethylene) to power refinery operations. Refineries also separate individual natural gas liquids (NGLs), which may be used to make fuel products or may be sent to an alkylation unit for further processing.
PART 5
The Changing Market
The Authors

ECONOMICS

Rick Bobigian
President and Chief Executive
Black Pool Energy

Rick Bobigian is President and Chief Executive of Black Pool Energy GP LLC, the general partner of Black Pool Energy LP. He is also a founder and member of its Board of Managers. Prior to Black Pool, Bobigian managed business functions for Osprey Petroleum Company, a firm engaged in the search for oil and gas offshore along the Texas Shelf. He was a founder, Executive Vice President, and member of the Board of Directors of Osprey. Before Osprey Petroleum, Bobigian engaged in the oil and gas business using various special-purpose entities to invest in both upstream and midstream assets. He is Chair of the PETEX Advisory Board and a long-time instructor of petroleum economics for PETEX at the Houston Training Center. Bobigian earned a B.S. in Geologic Engineering from the Colorado School of Mines.

ENERGY OPTIONS

Michael Webber
Instructor and Associate Center Director
The University of Texas at Austin

Michael Webber is Associate Director of the Center for International Energy and Environmental Policy, Co-Director of the Clean Energy Incubator, and Assistant Professor of Mechanical Engineering at The University of Texas at Austin. He is on the Board of Advisors of Scientific American and has authored more than 125 articles, columns, and book chapters. He has given more than 150 lectures, speeches, and invited talks in the last few years, including testimony for a U.S. Senate hearing, keynotes for scientific conferences, and lectures at the United Nations. Michael holds four patents and is an originator of the Pecan Street Project, a multi-institutional public-private partnership in Austin to create the smart electricity and water utilities of the future. He earned B.A. and B.S. degrees in Liberal Arts and Aerospace Engineering from UT-Austin and a M.S. and Ph.D. degrees in Mechanical Engineering from Stanford University.

ENVIRONMENTAL CONCERNS

Joe Ibanez
Chief Executive Officer
SAGE Environmental Consulting

Joe Ibanez has nearly 15 years of experience in the environmental field. He is currently a partner and key principal at Sage Environmental Consulting, LLP. His broad experience covers hazardous waste and water issues, focusing on Clean Air Act regulations. Ibanez has worked extensively with all sectors of the oil and gas industry in preparing and negotiating complex permitting projects. He has completed environmental audits and helped multiple facilities implement environmental management systems. This experience has enabled him to directly interface with industry and local, state, and federal agencies (such as the Texas Commission on Environmental Quality and EPA Region 6) to solve technical and regulatory problems.

Along with participating in technical reviews and regulatory negotiations on projects, Ibanez participates in providing leadership and strategic planning for Sage and helped develop and implement a company-wide performance measurement system focused on generating and managing sustainable growth. Ibanez has a Chemical Engineering degree from The University of Texas at Austin.

INDUSTRY SAFETY

Jim Johnstone
President and Co-founder
Contek Solutions

Jim Johnstone, a 30-year veteran of the oil and gas business, has worked with various companies to implement management systems and set up exemplary safety programs. He has led process hazard reviews, implemented behavioral-based training programs, conducted safety training, led safety compliance initiatives and investigated incidents. Johnstone began his career with ARCO (now BP) and later became responsible for all its process safety and support of environmental health and safety regulatory compliance for worldwide operations. He has participated in numerous technical committees and authored technical content, including safety publications for the American Petroleum Institute. He holds a B.S. in Mechanical Engineering from Washington State University and a Certified Safety Professional certificate from the Board of Certified Safety Professionals. Johnstone is a member of the Society of Petroleum Engineers, American Society of Safety Engineers, and American Society of Mechanical Engineers.
In this chapter:

- Supply chain businesses that create new supplies of oil and gas
- Supply creation companies and how they operate
- Factors in investment decision-making
- Calculating rates of return to evaluate prospects
- Predicting future commodity prices

Conventional supplies of crude oil and natural gas are, by definition, extracted from reservoirs in the sedimentary rocks by means of wells drilled and equipped to flow or lift raw materials to the surface. Upon reaching the surface, these raw materials are partially processed at the well site to remove contaminants such as saltwater and poisonous and inert gases and solids. Next, these partially processed raw materials are transported from the well site via pipeline, barge, ship, or truck to a refiner for crude oil or a natural gas processing facility for natural gas (figs. 5-1.1 and 5-1.2). These raw materials are converted into finished and semi-finished products to be sold and consumed.

Figure 5-1.1. Crude oil refinery
Petroleum products are everywhere. Many of the common household items we use every day contain petroleum. Unfortunately, the recovery, transport, processing, and use of petroleum are fraught with potential hazards to human health and the Earth’s ecology. For example, exploration, drilling, and production use toxic chemicals that can pollute the air, water, and ground to yield a product that might be very useful but is also poisonous to most living things. Producing and transporting petroleum products pose risks of fire, explosions, and pollution. Similarly, refining it produces still more noxious chemicals that must be changed into harmless compounds or disposed of in harmless ways (fig. 5-2.1).

For these reasons and because of its size and importance to the economy, the petroleum industry is subject to much criticism. Various environmental groups monitor the industry and publicize dangers and potential dangers they find or suspect. Oil companies face a great public relations challenge in regard to their adverse impact to the environment.

Figure 5-2.1. Recovery, transport, processing, and use of petroleum have potential hazards to human health and the Earth’s ecology.
Petroleum is only one source of energy. People and countries care about energy because it is relevant to many sectors across societies. Many sources are used to supply that energy. The world uses a mix of oil, coal, natural gas, nuclear, and other alternatives, in order of decreasing magnitude. The world's use of fuels includes slightly less oil and slightly more traditional biomass, such as wood or cow dung, than the United States, but other than that has a similar mix. In the United States, petroleum is the leading fuel source, followed by natural gas, coal, nuclear, hydropower, and other renewable energy (fig. 5-3.1).

A British thermal unit (Btu) is equal to the energy of about one standard kitchen match. In 2004, the United States reportedly used one billion million Btus a year. A quad is 1 quadrillion Btus, or \(1 \times 10^{15}\) Btus. In 2004 alone, total energy use was approximately 4.5 quad for the world's consumption and 100 quad for consumption in the United States. Since then, global consumption has increased to approximately 500 quad in 2008, while consumption in the United States has stayed about the same.

Figure 5-3.1. The global (left and middle) and United States (right) energy mix is diverse, although fossil fuels satisfy more than 80% of the world's primary energy resources.
abnormal pressure, 39, 41
absolute ownership, 88
absorption, 334, 520
abstract, 93
accident investigation, 599
acidic acid, 306
acid fracturing, 305
acid gases, 336
acidizing
 about, 302, 305
 additives, 306
 carbonate acidizing, 305
 perforating acid, 306
 sandstone acidizing, 305
acid stimulation, 302
acoustic logs, 62
acquired federal land, 80
act of nature or God, 96
additives, 306, 573
administrative controls, 594
adsorption, 334, 520
adsorption process, 337
adsorption tower, 335
aerated mud, 247
aerial photographs and satellite images, 43–45
affidavits, 93
air drilling, 246
air guns, 57
air liquefaction, 458
air pollutants, 566
air quality, 517, 584–586
adjustable choke, 298
Alaska, 79, 575
Alaska pipeline, 372
aligning and welding pipe, 442–443
aliphatic petrochemicals, 508
alkaline flooding, 323
alkylation, 495–496
American Association of Professional Landmen, 77, 101
American Petroleum Institute (API) standards, 442
amortization, 544
analyst projections, 614–617
anchor lines, 452
angular nonconformity, 35
annual cash flow, 540
annular pressure, 197
annular preventers, 262
annulus, 285
anomalies, 48
anticlinal traps, 30, 31, 32–33
anticlines, 15, 16
antisludge agents, 306
aquifer, 315
Arctic Princess, 412
Arctic production, 371–372
Arctic submersibles, 207
aromatic petrochemicals, 508
aromatics, 478
artificial lift
 beam pumping, 307–309
 electric submersible pumps, 309
 gas lift, 311
 plunge lift, 312
 progressive cavity pumps, 311
 subsurface hydraulic pumps, 310
asphalt-base crude oil, 482
asphalt tanks, 404
assays, 482
assignment clause, 96
Association of American Railroads (AAR), 397
atmospheric distillation, 488–490
atomic diameters, 623
automatic tank gauge, 340
automation, 144, 433
auxiliary equipment, 356
average sample, 342
azimuth thrusters, 411
back end, 435
backfilling, 344, 445
back off, 250
back off connector, 250, 251
back-pressure regulator, 326
ballast, 395
ballasting, 207
ball sealers, 306
barges, 406
barium sulfate (barite), 260
barrel, 283
base maps, 66
basement rock, 48
basic sediment and water (BS&W), 340
basins, 16, 17
batching, 428
Bauger gravity map, 66
bayonet, 248
beam lift, 309
beam pumping, 307–309
beam pumping equipment, 307, 356–358
bending mandrel, 441
bending pipe, 441
bending shoe attachment, 441
bent housing, 229
benzene, 478
berms, 449
berths, 416
best case outcome, 547
bid proposals and specifications
 combination agreement, 130–131
daywork contracts, 130
 footage contracts, 129
turnkey contract, 130
Big Inch, 391, 394
biodegradation, 589–590
bioenergy, 619
biofacies maps, 67
biofuels, 517
biomass, 607
biostatigraphy, 65
bits
 diamond bits, 157
 hybrid bits, 157
 roller cone bits, 156
blending and using additives
 about, 504
diesel fuel, 506
 furnace and residual fuel oils, 506
gasoline, 505
blinding, 380
blind rams, 263
blocks and drilling line, 137–140
blooey line, 246
blowout preventers (BOPs), 261
blowouts, 259, 270, 277, 574–575
boil-off gas (BOG) facilities, 466
boil-off temperature, 487
bonus, 87, 94
boom, 440, 577
booster substation, 420
borehole, 281
bottle sampling, 341
bottle test, 329
bottle-type submersibles, 207
bottomhole assembly, 229
bottomhole assembly vibrations, 198
bottomhole pressure, 218
bottomhole pressure test, 318
bottoms, 491
bow thrusters, 407
bradenhead, 298
braided electric line, 351
braided steel line, 351
breakout tanks, 427
breaks, 446
Brent (crude oil index), 534
bridle, 307
BTUs (British thermal units), 334, 607
BTX recovery, 500
bubble caps, 488
bubblers, 335
bubbling the gas, 335
build rate, 222
bullheading, 241
bullhead method, 264
bull wheel, 283
bund walls, 466
Bureau of Land Management (BLM),
 81, 101
Bureau of Ocean Energy Management,
 Regulation and Enforcement
 (BOEMRE), 81, 568
Burma (Myanmar), 111
bury barges, 449, 453
business cycle, 563
business model overview
 about, 533
 downstream business units, 535
 midstream business units, 534
 revenue, 535
 upstream business units, 534
 butadiene, 480, 508
 butane, 337, 478
 butylene, 480
 byproducts, 495
cable-tool drilling, 416–418
caloric value, 466
Canadian supplies, 416
cap rock, 32
cap welders, 442
carbonate acidizing, 305
carbon capture and sequestration,
 622–624
carrier bar, 307
carrier rigs, 351
cascade refrigeration, 524
cased and perforated completion,
 287–288
case law, 88
cash flow, 541, 544
cash flow model, 539
casing and production liner repair, 362
casinghead, 298
catalyst, 492
catalytic (cat) cracking, 492–493
catalytic reforming, 497–498
catch in or between injury, 270
caucasian flooding, 323
cellulosic sources, 629
cementing the casing, 182–184
cement plug, 361
cement retainer, 362
centrifugal units, 432
centrifuge test, 343
cessation of production statement, 96
cetane number, 499
checklist inspection, 598
chemical absorption, 336
chemical flooding, 322–323
chemical hazards, 378
chemical treatment, 329
chemistry considerations, 124
choke, 298
choke manifold, 264, 265
cleaning contaminated soil
 biodegradation, 589
 mechanical methods, 587–588
 passive methods, 590
 recycling, 590
cleaning up shallow waters, 580
cleaning up the sea, 577–578
cleaning up the shore, 579
cleanup and restoration, 448
Clean Air Act, 567
clearing the title, 91
closed-loop drilling system, 571
closed system, 400
cloud-point temperature, 331
clump weights, 218
coalesce, 329
coating and wrapping pipe, 443–444
codes and standards, 593
coiled tubing units, 301, 353–354
coke, 493
coking, 494
cold production, 245
combination agreement, 130–131
combination drives, 317
combination traps, 36
commercial reserves, 221
commodity price selection, 558–560
common hazards, 270–272
common law, 88
companion plant, 514
complete or abandon decision,
 201–202
completion, 282
completion and equipment cost
 estimate, 545
completion rig, 286
completion technology, 282
completion types
cased and perforated completion, 287–288
open hole completion, 286–287
tubingless completion, 289
compliant platforms
about, 217
guyed-tower platforms, 218
spar platforms, 220
tension-leg platforms, 219
Composite System (CS1), 413
compressed air energy storage (CAES), 622
compressor stations, 432
computer technology, 69
concentrating solar power, 627
concrete coated pipe, 444
conditioning and compressors, 432
conductor pipe, 170, 284
confined space entry, 380
coning, 223
consideration, 87, 94
contact metamorphism, 23
contaminant removal, 336–337
continental crust, 12
continental plates, 14
continuous development clause, 96
continuous steam injection, 323
contour maps, 66–67
contractors, 128
contractor safety, 601
controlled directional drilling
about, 221–223
offshore directional wells, 223–224
onshore directional wells, 224–225
other applications, 225–226
tools and techniques, 227–234
controlling formation pressure, 187
controlling hazards, 379–381
control of oil movements, 423–424
crude oil refining processes, 483
crude oil trucking, 403
crude oil trunklines, 389–391
crust, 10
crustal plates, 12–14
cryogenic liquefaction unit, 464
cryogenic recovery
about, 522
cascade refrigeration, 524
expander processing, 522–523
cryogenics, 522
cryogenic tankers, 412
cumulative cash flow, 540
cups trap, 301
cutting a title, 93
custody, 419
custody transfer metering, 415
cuts, 481
cuttings, 64
cuttings samples, 64
cyclic steam injection, 324
cyclohexane, 480
cycloparaffins, 480
darcy, 28
darcy units, 302
data, 69
data, software and modeling technology
data, 69
graphical information systems (GIS), 73
graphics, 70–71
models, 72
seismic interpretation, 70
data analysis, 58
databases, 46
data collection, 46
data recording, 348
days away from work frequency, 600
daywork contracts, 130
deasphalting, 499
dead weight, 264
deadwell, 264
definitions, 336
depletion, 543
depreciation, 544
derricks and masts, 135–136
desiccant, 334
detecting contaminated water and soil, 587
development, 193–195
development surveys, 48
development wells, 206
deviated holes, 225
deviated wells, 222, 223
dewaxing, 499
diagnostic measurements, 196
disconformity, 35
dispersants, 578
distillates, 486
distillate, 487
distillation curve chart, 487
distilling column, 488
INDEX

Fundamentals of Petroleum

ditching, 438–439
doghouse, 270
dogleg, 248
dolomite, 305
dome plug traps, 31
domes, 16, 17
doodlebug crew, 53
double bond, 480
double-containment tanks, 466
double hulls, 411, 576
double jointing, 441
downdip, 316
downstream, 423
downstream business units, 533, 535
draft marks, 406
Drake well, 46, 386
drawworks, 140–144
drill collars, 134, 154, 227
drillers log, 60
driller’s method, 264
drilling. See also drilling operations,
107–278, 202
drilling ahead, 276–277
drilling assembly
bits, 156–157
drill pipe and drill collars, 154–155
drilling columns, 489
drilling draft, 213
drilling fluid compensation, 162–163
drilling jar, 249
drilling operations
air or gas drilling, 246–247
controlled directional drilling
221–244
drilling personnel and contracts,
127–131
drilling systems, 134–148
drilling today, 120–121
drill site preparation, 273–278
summary, 273–278
drilling systems
about, 131–132
automation, 144
blocks and drilling line, 137–140
circulating system, 158–163
derricks and masts, 135–136
drawworks, 140–144
drilling assembly, 154–157
hoisting system, 133–134
power system, 164–168
rotating system, 145–153
drilling today, 120–131
drilling to final depth, 188
drill pipe and drill collars, 154–155
drill site preparation
about, 273
blowouts, 277
drilling ahead, 276–277
drill site procedures, 169–171
rig installation, 274–275
well completion, 278
drill site procedures after drilling, 202
cementing the casing, 182–184
complete or abandon decision,
201–202
controlling formation pressure, 187
drilling to final depth, 188
drill site preparation, 169–171
expandable casing, 188
formation evaluation, 188–201
intermediate casing, 187
other land operations, 202
rigging up, 172
running surface casing, 180–181
spudding in, 173–176
tripping in, 184–186
drill stem test (DST), 64
drilling hazards, 376
drilling safety, 381
dry-bed absorption, 525
dry-bed process, 337
dry-hole clause, 96
dry trees, 299, 368
dump tanks, 392
Dutch East Indies (Indonesia), 112
dynamic positioning, 210, 211
early days of production practices
completion, 282
pumping, 283
early days of refining and processing,
473–475
early methods of transportation
first oil pipelines, 389–392
gas transmission pipelines, 393–394
rail and tank cars, 388
ships at sea, 395
tank trucks, 396
wagons and water, 387
early pipelines, 389–392
Earth cross section, 10
economic impact, 613
economics of creating new supplies
business model overview, 533–535
integrated independent energy companies, 536–538
effluent water, 516, 583
eighteen wheeler, 402
electrical hazards, 378
electric drives, 166–168
electric logs, 61
electric submersible pumps, 309
electrified transportation, 620
electronic test, 358
electrostatic heater, 331
emergency planning, 604
eminent domain, 389
Employee Right-to-Know Standard, 569
emulsifier, 328
emulsion heater types
electrostatic heater, 331
heater-treater, 330
paraffin control, 331
emulsions, 306
enamel coatings, 443
Endangered Species Act, 570
energy attitudes, 616–617
energy challenges
economic impact, 613
environmental impact, 612
security impact, 614
energy consumption, 609–611
energy consumption projections, 615
energy options and policy
about, 607–608
analyst projections, 614–617
energy challenges, 612–614
energy consumption, 609–611
energy technologies, future,
620–631
energy tradeoffs, 618–619
summary, 632
energy technologies, future
critical technologies, 620
green energy transition, 620–631
energy tradeoffs
choices, 618
priority balancing, 619
gases, 164–165
Environment Act, 570
environmental, health and safety concerns about, 565
exploration and production environmental impacts, 571–590
health and safety, 590
industry workplace safety, 591–604
international laws and treaties, 570–571
U.S. laws and regulations, 566–570
environmental considerations
air quality, 517
water quality, 516
environmental impact. See also exploration and production environmental impacts
falls, 271, 376
farmer, 99
farm-in, 99
farmout, 99
defaults, 18–20, 24
fault traps, 30, 31, 33
Federal Energy Regulatory Commission (FERC), 429
Federal Power Commission (FPC), 429
Federal Railroad Administration (FRA), 439
fee, 88
feedstocks, 397, 475
fee simple, 88
expressed covenants, 87
frac-pack, 296
frac-pack, 296
free point indicator, 250, 251
free water knockout (FWKO), 327
free water removal, 327
fracturing fluid, 304
fractionation, 481
fractionation of NGLs, 526–527
fractionation plant, 527
front end, 435
fuel improvement, 499
gas, 476
gas drilling, 246
gasseated mud, 242–243
gas lift, 309, 311
gas-lift devices, 283
gas/liquid mixtures, 242
gas liquids, 412
gas metering about, 346
data recording, 348
metering, 347–348
gas odorization, 466
gasoline blending and using additives, 505
gas pipeline, 430
gas plant, 472
gas processing about, 518–519
fractionation of NGLs, 526–527
NGL mixture recovery, 520–525
environmental impact statement, 82
Environmental Protection Administration (EPA), 430, 515, 580
equipment designed for safety, 593
Equivalent Circulating Density (ECD), 234, 237
Equivalent Static Density (ESD), 234
expansion dome, 388
experience modification rate, 601
exploration agreement, 587
exploration and production environmental impacts
blowouts, 574–575
cleaning contaminated soil, 587–590
cleaning up shallow waters, 580
cleaning up the sea, 577–578
cleaning up the shore, 579
closed-loop drilling system, 571
detecting contaminated water and soil, 580
hazards to workers, 580
mud additives from waste, 573
pipelines and transportation environmental impacts, 580–582
prevention, 576
refining environmental impacts, 583–586
spills from tankers, 575–576
synthetic-based drilling mud, 572
exploratory surveying, 48
exploratory wells, 59
explosion injury, 270
explosive fracturing, 302
explosive methods, 53
explosives, 302
expressed covenants, 87
extended reach wells, 225
extract, 499
Exxon Valdez, 574–575
falls, 271, 376
farmer, 99
farm-in, 99
farmer, 99
faults, 18–20, 24
fault traps, 30, 31, 33
Federal Energy Regulatory Commission (FERC), 429
Federal Power Commission (FPC), 429
Federal Railroad Administration (FRA), 439
fee, 88
feedstocks, 397, 475
fee simple, 88
expressed covenants, 87
frac-pack, 296
frac-pack, 296
free point indicator, 250, 251
free water knockout (FWKO), 327
free water removal, 327
front end, 435
fuel improvement, 499
gas, 476
gas drilling, 246
gasseated mud, 242–243
gas lift, 309, 311
gas-lift devices, 283
gas/liquid mixtures, 242
gas liquids, 412
gas metering about, 346
data recording, 348
metering, 347–348
gas odorization, 466
gasoline blending and using additives, 505
hydrocarbon mix of, 477
gas pipeline, 430
gas plant, 472
gas processing about, 518–519
fractionation of NGLs, 526–527
NGL mixture recovery, 520–525
fractionation of NGLs, 526–527
NGL mixture recovery, 520–525
frac-pack, 296
fractions, 481
fractionation, 481
fractionation of NGLs, 526–527
fractionation plant, 527
front end, 435
fuel improvement, 499
gas, 476
gas drilling, 246
gasseated mud, 242–243
gas lift, 309, 311
gas-lift devices, 283
gas/liquid mixtures, 242
gas liquids, 412
gas metering about, 346
data recording, 348
metering, 347–348
gas odorization, 466
gasoline blending and using additives, 505
hydrocarbon mix of, 477
gas pipeline, 430
gas plant, 472
gas processing about, 518–519
fractionation of NGLs, 526–527
NGL mixture recovery, 520–525
fractionation, 481
fractionation of NGLs, 526–527
fractionation plant, 527
front end, 435
fuel improvement, 499
gas, 476
gas drilling, 246
gasseated mud, 242–243
gas lift, 309, 311
gas-lift devices, 283
gas/liquid mixtures, 242
gas liquids, 412
gas metering about, 346
data recording, 348
metering, 347–348
gas odorization, 466
gasoline blending and using additives, 505
hydrocarbon mix of, 477
gas pipeline, 430
gas plant, 472
gas processing about, 518–519
fractionation of NGLs, 526–527
NGL mixture recovery, 520–525

The University of Texas at Austin
summary, 528
gas processing facility, 532
gas reserves, 75
gas sampling, 345
gas testing, 346–348
gas transmission pipelines, 393–394
gas window, 26
gathering lines, 392
gathering stations, 418
gathering systems, 389, 392, 417
gauger, 340, 419
Gaz Transport system, 413
General American Transportation Corporation (GATX), 400, 401
general and administrative expense (G&A), 543
general duty clause, 595
gerically accepted accounting practices (GAAP), 543
geochemical model, 72
geological societies, 46
geologic structures, 14
geologic time, 21
gephones (jugs), 50, 53
geophysical surveys about, 47
gravity surveys, 49
magnetic and electromagnetic surveys, 48
magnetometer surveys, 48
magnetotellurics, 48–49
seismic surveys, 50–56
geophysics, 47
Geronimo line, 276
global climate change, 5
global demand, 1–2
global history of drilling operations, 110–114
gauge, 33
government ownership of mineral rights, 76
government regulation, 399, 405
GPS (global positioning systems), 450
grabens, 20
granting clause, 94
geographical information systems (GIS), 73
graphite, 37–71
gapack, 295
gravel pack completions, 295–296
gravel packing, 361
gravimeter, 49
gravimetric density, 621
gravity, S&S and sulfur content measurement, 343–344
gravity drainage, 316–317
green energy transition carbon capture and sequestration, 622–624
large-scale electricity storage, 622
next-generation biofuels, 629–630
nontechnical solutions, 631
small-scale electricity storage, 620–621
solar energy, 627–628
supergirders, 625
wind energy, 625–626
greenhouse gases (GG), 571
gross income, 540, 543
gross vehicle weight (GVW), 402
growth faults, 19
guide plate, 299
Gulf Interstate Waterway, 406
guy wires, 218
gyroscopeic compass, 230
habendum clause, 95
hazard communications, 381
Hazardous Air Pollutants (HAPs), 584–586
Hazardous Waste Operations and Emergency Response Standard, 569
hazards analysis of, 593
checking, 598
controlling, 379–381
most common, 376–378
Hazard Communication, 569
hazards to workers, 580
health and safety, 590
heater-treater, 330
heating value, 346
heat pipes, 439
heat treatment, 329
heave compensators, 213
heavy oil cracker (HOC), 493
heavy pitch, 476
hedges, 562
Henry Hub, 534, 559
heptane, 478
hexane, 478
high-pressure connector, 299
high pressure release, 270
history of demand for oil, 2–4
history of drilling operations
U.S. 1840s, 108
U.S. 1850s, 109
U.S. late 1800’s, 110
U.S. 1900s, 114–115
about, 107–119
cable-tool drilling, 116–117
global history, 110–114
rotary drilling, 118–119
Spindletop, 114–115
hoisting system, 133–134
hole completion, 232
horizontal directional drilling, 446
horizontal separator, 326
horst, 20
hot bends, 441
hot pass welders, 442
hot tapping, 380
huff and puff, 324
hulls, 411
hybrid company, 6
Hydrate formation prevention, 332–333
hydrates, 332
hydraulic factors, 420
hydraulic fracturing about, 302–303
fracturing fluid, 304
proppants, 304
hydraulic unit, 355
hydrocarbon structures, 479
hydrocarbon traps, 30
hydrochloric acid (HCL), 305
hydrocrackate, 494
hydrocracking, 485, 494
hydrodesulfurization, 500
hydroelectric storage, 622
hydrofluoric acid (HF), 305
hydrogenates, 494
hydrogen sulfide, 266, 567
hydrogen sulfide exposure, 271
hydrometer, 343
hydrophones, 56
hydrostatic pressure, 260
hydrostatic testing, 358
hydrotreating, 502–503
i-butane, 478
icebreaking tankers, 411
immiscible gas, 321
immiscible gas injection, 321
immiscible liquids, 328
impactors, 54
impermeable barriers, 30
implied covenants, 83, 87
improved recovery techniques about, 318–319
chemical flooding, 322–323
immiscible gas injection, 321
miscible gas injection, 321–322
thermal recovery, 323–324
waterflooding, 320
incident rates, 600
inclinometer, 230
independent company, 536
India, 111
industrial hygiene, 600
industry accidents, 591
industry workplace safety. See also
injury reduction, 591–604
infrared (IR) cameras, 581
initiating flow
about, 301
acidizing, 305–306
explosives, 302
hydraulic fracturing, 303–304
stimulation, 302
injecting, 242
injury reduction
about, 592
administrative controls, 594
equipment designed for safety, 593
personal protective equipment (PPE), 594
safety and health program organization, 596–601
safety regulations, 595
inorganic petrochemicals, 508
in-service welding, 380
integrated gasification combined cycle (IGCC), 623
integrated independent energy companies
about, 536
calculating reserves and estimated ultimate recovery, 554–556
commodity price selection, 558–560
creating new supplies, 534–536
financial model and cash flow calculations, 561
investment decision-making, 539–544
production schedule creation, 557
prospect generation and evaluation, 545–544
rate of return calculation, 561
interconnected tank cars, 400
interfacial tension, 322
intermediate casing, 187, 284
intermediate spool, 298
internal-combustion engine, 283
internal distilling process, 486
International Association of Drilling Contractors (IADC), 270
international laws and treaties, 570–571
Interstate Commerce Commission (ICC), 429
interstices, 248
interstitial water, 248
invert oil mud, 241
investment, 541
investment capital (I), 544
investment decision-making, 539–544
investment in project, 540
Iraq, 113
iso-butane, 478
isochore maps, 67
isomerization, 497
isomers, 478
isopach maps, 67
jacket, 215
jar on the drill stem, 249
jet perforating, 288
jet sled, 452
jet sub, 243
jetting, 301
job safety analysis (JSA), 381, 594, 598
joint operating agreement, 100
jug hustlers, 53
jugs, 53
kelly, 146–148
kelly vs. top drive, 150–151
kerogen, 47
kerosene, 490
keyseat, 248, 249
keyseat wiper, 252
lacks, 258, 259
knees, 407
Kvaerner-Moss design, 413
Kyoto Protocol, 571
LACT units, 344–345, 419
land description, 95
landman, 90
land operations, other, 202
land patent, 93
Landsat, 44–45
large-scale electricity storage, 622
lateral faults, 19
lateralers, 232
lay barge, 449
leaning, 588
lean oil, 524
lease agreement, 538
lease automatic custody transfer (LACT), 344–345, 419
lease broker, 90
leases, 75, 85, 87
leasing, 545
lenticular traps, 35
lessees, 79, 87
lessors, 84, 87
licenses, 75
life on earth
petroleum geology, 21–24
rock categorization, 22–24
light distillates, 490
limestone, 305
line fill, 423
liner hanger, 285
liners, 232, 285
line travel-applied coatings, 443
line-up clamps, 442
liquefied natural gas (LNG)
baseload LNG plant, 464–466
history of, 458–461
links of LNG chain, 462–463
LNG receiving terminals, 466
LNG ships, 467
ocean-going tankers, 408
liquefied natural gas (LNG) chain links
about, 462–463
gas production, 463
liquefaction, 463
pipeline transmission, 463
regasification, 462, 463
send out to local pipeline, 463
shipping, 463
liquefied natural gas (LNG) development, 461
liquefied natural gas (LNG) tanks, 465
liquefied natural gas (LNG) vaporizers, 466
liquefied petroleum gas (LPG), 321, 396
liquefied petroleum gas (LPG) transport, 405
liquid pipelines, other kinds, 429
liquid segment, 312
List of Endangered and Threatened Wildlife and Plants, 570
lithofacies maps, 67
Little Inch, 391, 394
LNG: Basics of Liquefied Natural Gas (PETEX), 412, 467
loading and unloading facilities, 414–415
lockout/tagout (LOTO) program, 380, 594
logging methods, 60
logging while drilling (LWD) measurement and applications
density, 199
magnetic resonance, 200
natural gamma ray, 198–199
neutron porosity, 200
resistivity, 199
spectroscopy, 201
velocity, 200
looping of long lines, 416
lost circulation, 234
Louisiana Offshore Oil Port (LOOP), 414
lowering and backfilling, 444–445
low temperature separation unit, 338
lube-and-bleed method, 264
lubricating oils and waxes, 499
macaroni string, 360
macroeconomic forces, 535
magma, 22
magnetic and electromagnetic surveys, 48
magnetic resonance, 200–201
magnetometer, 48
magnetometer surveys, 48
magnetotellurics, 48–49
magnetotelluric survey, 48
mainline, 420
mains, 430
making a connection, 152–153
managed power density, 235
managed pressure drilling (MPD), 237, 238
managed pressure drilling and density about, 237–238
constant circulation, 239
foam drilling, 243
gaseated mud, 242–243
key to successful drilling, 244
lost circulation and well kicks, 245
multiphase drilling fluids, 241
pressure control, 239
underbalanced drilling and density, 240
underbalanced with light drilling mud, 241
management of change, 381
management systems approach to safety, 592
manifold, 418
mantle, 10
Manual of Petroleum Measurement Standards, 342
maps
base maps, 66
Bouguer gravity map, 66
biofacies maps, 67
contour maps, 66–67
examples of, 71
iscochore maps, 67
isopach maps, 67
lithofacies maps, 67
of natural gas pipelines, 431
reservoir development tools, 66
structural contour maps, 66
topographic maps, 66
vertical cross sections, 68
marine riser, 299
marine seismic methods, 56
Marine Spill Response Corporation (MRSC), 576
marine transportation
about, 406
average-size tankers, 410
barges, 406
cryogenic tankers, 412
icebreaking tankers, 411
loading and unloading facilities, 414–415
natural gas tankers, 412–413
oceangoing tankers, 408
supertankers, 409
towboats, 407–408
tugboats, 407
market forces, 535
master valve, 298
Material Safety Data Sheet (MSDS), 277, 381
matrix acid, 305
measurement and quality assurance, 425
measurements and application
annular pressure, 197
bottomhole assembly vibrations, 198
directional measurements, 196
weight and torque-on-bit, 197
measurement while drilling (MWD) and logging while drilling (LWD)
averaged, 192
development of, 193–195
measurements and application, 196–201
measuring and testing oil and gas gravity, S&S and sulfur content measurement, 343–344
temperature measurement, 342
mechanical drives, 165
mechanical methods, 587–588
mechanized equipment hazards, 378
membrane tank design, 413
mercaptans, 434
metals, examining, 122–124
metals for oilfield use, 123
metamorphic rocks, 23
metering, 347–348
meter run, 348
methane, 478
Methane Pioneer, 461
methyl tert-butyl ether (MTBE), 587
microfossils, 65
micromagnetic technique, 48
Mid-Atlantic Ridge, 13
middle distillates, 490
midstream business units, 533, 534
migration of petroleum, 29–36
Migratory Bird Treaty Act, 569
millidarcies, 28
million barrels per day (MMBD), 617
mineral deed, 89
mineral estate owner, 88
mineral ownership, 85
mineral rights
of government ownership of, 75, 76
private ownership of, 75
Minerals Management Service (MMS), 81, 430, 568
Mintrop’s principles, 53
miscible gas injection, 321–322
mixed-base crude oil, 482
mobile drilling rig, 205
mobile offshore drilling units
about, 206
column-stabilized semisubmersibles, 213
drill ships and ship-shaped barges, 210–211
inland barges, 209
jackups, 208–209
semisubmersibles, 212
submersibles, 207–208
mobile offshore drilling units (MODUs), 206–213
models, 72
modern land methods, 54–55
modern transmission systems, 430–431
molecular masses, 623
molecule rearrangement
alkylation, 495–496
catalytic reforming, 497–498
isomerization, 497
monels, 230
monetization chain, 462
moon pool, 210
mooring facilities, 414
most difficult case outcome, 547
Mother Hubbard clause, 95
motor transportation
of crude oil trucks, 403
government regulation, 405
liquefied petroleum gas (LPG) transport, 405
refined products transport, 403–405
vehicle types, 402
mousse, 578
movement sequence, 427
mud
aerated mud, 247
gaseated mud, 242–243
invert oil mud, 241
mud additives from waste, 573
mud density use, 234–236
normal mud density, 236
static mud column, 237
synthetic-based drilling mud, 572
underbalanced with light drilling mud, 241
multi-fluid cascade process, 464
multiple completions, 293
napalm, 304
Napoleonic code, 88
naptha, 490, 497
napthalenes, 480
National Oil Companies, 536
natural gamma ray, 198–199
natural gas, 38
natural gas handling
contaminant removal, 336–337
dehydrating, 334–335
hydrate formation prevention, 332–333
natural gas liquids removal, 337–338
natural gas liquids (NGLs), 337, 408
natural gas liquids (NGLs) mixture recovery
about, 520
cryogenic recovery, 522–523
dry bed absorption, 525
oil absorption, 524
straight refrigeration, 521
natural gas liquids removal, 337–338
natural gasoline, 478
natural gas pipelines
automation, 433
condensate and compressors, 432
netof, 431
modern transmission systems, 430–431
odorants, 434
natural gas processing plant, 472
natural gas tankers, 412–413
natural gas transfer stations, 582
natural gas wells, early, 393
naturally recurring radiation, 600
n-butane, 478
negative buoyancy, 444
net income, 540, 544
neutron log, 61
neutron porosity, 200
next-generation biofuels, 629–630
nitro shooting, 302
noise hazards, 378
nominations, 423
nonanes, 337, 478
nonconformity, 35
nonconventional plays, 70
nondestructive testing (NDT), 442
nonmagnetic drill collars, 230
nonownership-in-place, 88
normal butane, 478
normal faults, 19
normalized incident rates, 600
normal mud density, 236
normal pressure, 39–40
notice for bids, 79
nuclear logs, 61
Occupational Health and Safety Act, 569, 595
Occupational Health and Safety Administration (OSHA), 270, 430, 580
ocean bottom cable (OBC) seismic acquisition, 57
ocean bottom cable systems data analysis, 58
-oil going tankers, 395, 408
oceanic crust, 12
octane, 478, 497
odorants, 434
Offset Drilling Rule, 83
offshore completions, 368–369
offshore drilling
history of, 203–205
mobile offshore drilling units, 206–213
modern offshore operations, 206
rigid platforms, 214–220
offshore fluid handling, 370–371
offshore pipeline construction
about, 449
burey barge, 453
conventional lay barge, 450–452
reel vessel, 455
submersible barge, 455
superbarges, 454
offshore production platforms
about, 365–367
arctic production, 371–372
offshore completions, 368–369
offshore fluid handling, 370–371
oil. See also crude oil (crude)
petroleum, 37
oil, gas, and mineral leases, 86
oil absorption, 524
oil accounting, 425
oil and gas leases. See also leases, 75, 85
oil and gas production, 77
oil and gas seeps, 45
offshore emulsions, 328–329
offshore metallurgy
about, 121
-chemistry considerations, 124
corrosion fundamentals, 125–126
metals, examining, 122–124
metals for oilfield use, 123
oil burn control, 425
Oil Pollution Act, 568
oil pool, 9
oil reserves, 75
oil sampling
sample types, 342
sampling methods, 341
oil slick
-oil slicks, 578
Oil Spill Preparedness and Response Treaty, 570
oil window, 26
olefins, 480
olefin units, 512
one-call system, 273
on station, 210
OPEC (Organization of Petroleum Exporting Companies), 3
open hole completion, 286–287
operating expense (OPEX), 543
operating history or experience, 593
operator, 87
optimized cascade process, 464
organic theory, 25
-orifice meter, 347
orthorectified Landsat data, 45
Outer Continental Shelf (OCS), 81, 101
Outer Continental Shelf Lands Act, 568
out-of-control well
about, 257–258
ever warnings, 266–267
first line of defense, 258–259
shutting in a well, 261–266
wellbore pressure, 260
summary, 268
overbalanced density, 234
overburden rock, 26
overriding royalty, 100
overshots, 253
over-the-ditch coatings, 443
over-the-ditch tape, 444
overthrust faults, 19
ownership-in-place, 88
packers, 291–292
pad, 273
paid-up lease, 96
paleoenvironmental analysis, 65
paraffin, 331, 478
paraffin-base crude oil, 482
paraffin control, 331
paraffin scrapers, 358
parasite string, 243
participating royalty owner, 89
party chief, 53
passive methods, 590
passive soil-gas technique, 587
pay zone, 225
peak shaving LNG facility, 459–460
pentanes, 337, 478
perforating acid, 306
perforating gun, 288
perforating holes, 287
perforator, 288
permafrost, 371, 437
permanent packers, 358
permeability, 28
permeable rocks, 28
Persia (Iran), 113
personal protective equipment (PPE), 277, 380, 594
petcocks, 341
petrochemical plant
about, 509–511
companion plant, 514
olefin units, 512
polymer units, 513
supporting facilities, 545
petrochemicals, 397–507
feedstocks and final products, 514
petrochemical plant, 509–514
types of petrochemicals, 507–508
petroleum, 477
petroleum accumulation
petroleum origins, 25–27
porosity and permeability of oil bearing rocks, 27–29
petroleum bearing rocks, 24
petroleum constituents, 517
petroleum economics
about, 531–532
economics of creating new supplies, 533–563
summary, 562–563
petroleum exploration
databases, 46
data collection, 46
gеophysical surveys, 47–58
private company libraries, 46
public agency records, 46
reservoir development tools, 59–73
surface geographical studies, 43–46
summary, 73
petroleum explorationists, 47
petroleum geology
about, 9–10
basic concepts of, 10–20
faults, 18–20
fluid distribution, 39
folds, 15–17
geologic structures, 14
life on earth, 21–24
migration of petroleum, 29–36
petroleum accumulation, 25–29
plate tectonics, 11–14
reservoir fluids, 36–39
reservoir pressure, 39–41
summary, 41
petroleum origins, 25–27
petroleum products transported by rail, 397–398
petroleum reserves, 221
petroleum reservoir, 9–10
petroleum transportation modes, 457
Petty Geographic Engineering Company, 43
photolysis, 590
photovoltaic manufacturing, 627
physical absorption, 337
pipe gang, 442
pipe-laying barges, 451
Pipeline and Hazardous Materials Safety Administration (PHMSA), 429
pipeline construction on land
about, 434–435
aligning and welding pipe, 442–443
bending pipe, 441
cleanup and restoration, 448
coating and wrapping pipe, 443–444
ditching, 438–439
lowering and backfilling, 444–445
right-of-way clearing, 436–437
specialty and tie-in crews, 446–447
spread assembly, 435
stringing pipe, 440–441
testing and commissioning, 449
pipelines. See also product pipelines, 341, 389
pipelines, early
crude oil trunklines, 389–391
gathering systems, 392
product pipelines, 392
pipelines and transportation
environmental impacts, 580–582
pipe racking, 178–179
pipe rams, 262
pipe-trenching barge, 452
plate tectonics, 11–14
plats, 100
play, 90
plug-back cementing, 361
plugs, 32
plug trap, 32
plunger lift, 312
point-the-bit rotary steerable systems, 231
Poland, 110
polyethylene, 510, 513
polymer, 322
polymer units, 513
polypropylene, 510, 513
pontoon, 452
pooling, 84
pooling and unitization clause, 95
poor boy gas lift, 243
pores, 27
porosity, 27, 28
porosity and permeability of oil bearing rocks, 27–29
porous rocks, 27
ports of entry, 414
positive choke, 298
positive displacement pump, 307
possession estate, 89
posted barge rig, 205
posted barges, 207
potential or production tests, 317
potential tests, 317
power system
electric drives, 166–168
engines, 164–165
mechanical drives, 165
power transmission, 165
pressure hazards, 378
price deck, 558
primary production, 313
primary recovery, 313
primary term, 87
prime movers, 419
priority balancing, 619
private company libraries, 46
private ownership, 77, 88
process condition hazards, 378
process safety management, 604
producer, 340
producing zone, 287
production, 279, 281
production casing, 284–285, 298
production casing and liners, 284–285
production forecast, 557
production liner, 285
production packers, 358
production practices
about, 281
artificial lift, 307–312
early days of, 282–283
improved recovery techniques, 318–324
initiating flow, 301–306
reservoir drive mechanisms, 313–317
surface handling of well fluids, 325–348
well completion, 284–300
well service and workover, 349–362
well testing, 317–318
summary, 363–364
production price schedule, 547
production riser, 370
production safety
about, 375–376
controlling hazards, 379–381
most common hazards, 376–378
summary, 381
production schedule creation, 547, 557
production sharing agreement, 538
product pipelines
about, 426
batching, 428
control of products movement, 427
early, 392
liquid pipelines, other kinds of, 429
regulatory environment, 429–430
state and federal regulations, 429
products, sales and distribution, 515
progressing cavity pumps, 311
propane, 478
propane-mixed refrigerant liquefaction process, 464
proportionate reduction clause, 96
propellant agents (proppants), 304
propylene, 480
reinspect generation and evaluation, 545–561
protective gear, 273
public agency records, 46
public domain land, 80
pulsation, 348
pulsation dampeners, 348
pumping, 283
pumping order, 423
pump station operation
field gathering systems, 417, 419
pump stations and tank farm station manifold, 422
station tank farms, 421
trunkline station, 420
pump stations, 418
push-the-bit rotary steerable systems, 231
quad, 607
quality assurance processes, 425
racks, 397
radar, 45
radial flow, 532
radioactivity log, 61
raffinate, 499
rail and tank cars, 388
railheads, 388
Railroad Tank Car Safety Research and Test Project, 400
railway systems
petroleum products transported by rail, 397–398
safety, 400
tank car design and manufacture, 399
tank car springs and unit trains, 400, 401
U.S. government regulation, 399
rams, 261
rate of return (ROR), 541
rate of return calculation, 561
receiving terminal, 466
reciprocating compressors, 432
reclaimer, 589
reconnaissance surveying, 48
Rectisol process, 337
recycling, 590
reel barges, 449
reel vessel, 454
refined products, 426
refined products transport, 403–405
refiners, 386, 471, 472, 475, 476
refinery processes, 484
refining and processing
about, 471–472
early days of, 473–475
petrochemicals, 507–514
refining capacity, 515–517
refining crude oil, 481–506
structure of hydrocarbons in oil and gas, 476–480
summary, 518
refining capacity
environmental considerations, 516–517
products, sales and distribution, 515
refining concepts, 487
refining crude oil
about, 481
assays, 482
classifications, 482
refining processes, 483–506
refining environmental impacts
air quality, 584–586
water quality, 585–584
refining processes, 483–506
atmospheric distillation, 488–490
blending and using additives, 490–500
cracking, 492–494
fractional distillation, 486–491
molecule rearrangement, 495–498
solvent extraction, 499–500
treating, 501–504
vacuum distillation, 491
reformate, 498
refornulated gasoline (RFG), 428
regasification, 462
regional metamorphism, 23
regulatory environment, 429–430
relative value, 541
relief well, 225
remediation, 587
remotely operated vehicles (ROV), 57
remote production, 365–373
remote sensing, 44
renewables, 608
reserve pit, 571
reserves, 75, 561
reserves and estimated ultimate recovery calculation, 554–556
reserves calculation, 545
reserves in place, 554
reserves in place calculation, 547
reservoir development tools
data, software and modeling technology, 69–73
drill stem test, 64
maps, 66–68
sample logs, 62–64
stratigraphic correlation, 65
strat test, 64
well logs, 59–62
reservoir drive mechanisms
combination drives, 317
depletion drive, 313–314
gravity drainage, 316–317
water drive, 315–316
reservoir fluids
 about, 36
 fluid distribution, 39
 natural gas, 38
 oil, 37
 water, 37
reservoir modeling, 72
reservoir pressure
 abnormal pressure, 41
 normal pressure, 39–40
residual fuel oils, 506
residual oil, 491
resistivity, 199
resistivity log, 61
Resource Conservation and Recovery Act, 570
revenue, 535, 540, 542
reverse faults, 19
reverse method, 264
rich oil, 524
rich oil demethanizer (ROD), 524
rig-assisted unit, 355
rig collapse, 271
rigging up, 172
right-of-way, 436, 448
right-of-way clearing, 436–437
right-of-way laws, 389
rigid platforms
 about, 214–215
 concrete gravity platforms, 216
 steel caisson platforms, 217
 steel jacket platforms, 215
rig installation, 274–275
rigs
 auxiliary equipment, 356
 coiled tubing units, 353–354
 fluids, 356
 service and workover equipment, 350–351
 snubbing units, 354–355
 wireline units, 381–382
ring compounds, 488
ripper, 436
risked rate of return, 546
risk management plan, 604
robot maintenance system (RMS), 371
rock categorization
 petroleum bearing rocks, 24
 types of rock, 22–23
rock cycle, 24
rock ditcher, 438
rock shield, 445
rod cut, 358
Romania, 111
rotary drilling, 118–119
rotary shoe, 250
rotary table, 174–177
rotating control device (RCD), 235, 238
rotating system
 about, 145
 kelly, 146–148
 kelly vs. top drive, 150–151
 making a connection, 152–153
 swivel, 146
 top drive, 149
rotor, 228
royalties, 81, 87, 94, 95
royalty deed, 89
royalty expense, 542
royalty interest, 88, 89
royalty interest owner, 88
Rule of Capture, 83
running sample, 342
running surface casing, 180–181
runsheet, 91
runsheet mapping, 92
run ticket, 342, 425
Safe Drinking Water Act, 540
safety, 400
safety and health program organization
 about, 596–597
 accident investigation, 599
 contractor safety, 601
 hazards, checking for, 598
 incident rates, 600
 industrial hygiene, 600
 training, 602–604
 workers compensation, 599
seismic crew, 53
seismic data, 45, 51–52
seismic exploration, 47
seismic interpretation, 70
seismic reflection profile, 55
seismic section, 50
seismic surveys
 early methods, 53
 explosive methods, 53
 marine seismic methods, 56
 modern land methods, 54–55
 ocean bottom cable systems, 57–58
 seismic data, 51–52
 seismology, 50
seismograms, 50
seismographs, 50
seismology, 50
seismometers, 53
Selexol process, 337
self-elevating rig, 208
semisubmersible barges, 454
semi-trailer, 402
send-out system, 466
separating liquids from gases, 326
sequence stratigraphy, 65
sequestering agents, 306
service and workover equipment, 349–356
servicing, 281
servitude estate, 89
shale gas, 29, 244
shale oil, 29
shaped charges, 288
shar rams, 263
Sherman Antitrust Act, 82
shippers, 421
ships at sea, 395
ship-shaped barges, 210
shot, 53
shut-in royalty clause, 95
shutting in a well, 261–266
side-looking airborne radar (SLAR), 45
sidetracking, 361
simplified system, 401
single-containment tanks, 466
single point mooring (SPM) base, 414
skimmer, 578
slick line, 351
slop oil tank, 344
slug, 322
slurries, 429
small-scale electricity storage, 620–621
snubbing units, 354–355
soil cleaning, 587
solar energy, 627–629
solvent extraction
 BTX recovery, 500
 fuel improvement, 499
 lubricating oils and waxes, 499
 solvent treating, 499
sondes, 60
sonic log, 62
sound sources, 57
source plays, 244
source rocks, 26
sour crude, 480
sour gases, 336
spears, 253
special party tanks, 404
special requirements, 604
specialty and tie-in crews, 446–447
spectroscopy, 201
spent drilling fluids and cuttings, 572
spill, prevention, countermeasures and control (SPCC) plan, 567
spills from tankers, 575–576
Spindletop, 114–115
spoil, 438
spontaneous potential (SP) log, 61
spot market, 466
spot oil, 248, 249
spot prices, 3
spot sample, 342
spread, 435
spread assembly, 435
spudding in
 about, 176
 using a rotary table, 174–175
 surface hole, 176
 using a top drive, 175
 trapping out, 176–179
squeeze cementing, 362
squeeze tool, 362
stages, 309
Standard Oil Company, 473
standing valve, 308
state and federal regulations, 429
state patent, 93
static mud column, 237
static pressure, 348
static well, 264
station tank farms, 421
stator, 228
steam-assisted gravity drainage (SAGD), 323
steam cracking, 506, 512
steam drive, 323
steam injection, 323
steam methane reforming, 494
steerable motors, 229
steering tool, 230
stern, 411
stimulation, 302
stinger, 450, 452
stock tanks, 339
storage and handling, 283
straight refrigeration, 521
straight-run products, 497
strapped tank, 339
strat (stratigraphic) test, 64
strata, 22
stratigraphic correlation, 65
stratigraphic traps, 30, 34–35
stratigraphers, 64
stratigraphic correlation, 65
stratigraphy, 64
stress corrosion cracking, 398
strike-slip faults, 19
stringer welders, 442
stringing pipe, 440–441
string shot, 250
stripper, 623
struck by injury, 270, 376
stripping, 411
subjective control and data acquisition (SCADA) system, 424
supply chain business units, 533
supporting facilities, 513
surface blowout, 258
surface casing, 284
surface control panel, 351
surface estate owner, 88
surface geographical studies
 aerial photographs and satellite images, 43–45
 oil and gas seeps, 45–46
surface handling of well fluids about, 325
 crude oil storage, 339–340
 emulsion heater types, 330–331
 free water removal, 327
 gas sampling, 345
 gas testing, 346
 LACT units, 344–345
 measuring and testing oil and gas, 342–344
 natural gas handling, 332–338
 oilfield emulsions, 328–329
 oil sampling, 341–342
 separating liquids from gases, 326
 surface hole, 176
Surface Transportation Board, 405
surfactant-polymer flooding, 322
surfactants, 306, 322
surrender clause, 97
swabbing, 301, 359
swamp barges, 209
sweet crude, 480
sweetening the gas, 336
swivel, 146
synclines, 15
synthetic-based drilling mud, 572
tagging and flagging, 380
tailgate meeting, 603
takeoff, 93
tank battery, 339
tank capacity table, 339
tank car design and manufacture, 399
suction boosters, 420
sulfinol process, 337
sulfur recovery, 504
Summary of Work-Related Injuries and Illnesses, 595
superbarges, 449, 454
supergrids, 625
super majors, 536
supertankers, 409
supervisory control and data acquisition (SCADA) system, 424
supplies chain business units, 533
supporting facilities, 513
surface blowout, 258
surface casing, 284
surface control panel, 351
surface estate owner, 88
surface geographical studies
 aerial photographs and satellite images, 43–45
 oil and gas seeps, 45–46
surface handling of well fluids about, 325
 crude oil storage, 339–340
 emulsion heater types, 330–331
 free water removal, 327
 gas sampling, 345
 gas testing, 346
 LACT units, 344–345
 measuring and testing oil and gas, 342–344
 natural gas handling, 332–338
 oilfield emulsions, 328–329
 oil sampling, 341–342
 separating liquids from gases, 326
 surface hole, 176
Surface Transportation Board, 405
surfactant-polymer flooding, 322
surfactants, 306, 322
surrender clause, 97
swabbing, 301, 359
swamp barges, 209
sweet crude, 480
sweetening the gas, 336
swivel, 146
synclines, 15
synthetic-based drilling mud, 572
tagging and flagging, 380
tailgate meeting, 603
takeoff, 93
tank battery, 339
tank capacity table, 339
tank car design and manufacture, 399
suction boosters, 420
sulfinol process, 337
sulfur recovery, 504
Summary of Work-Related Injuries and Illnesses, 595
superbarges, 449, 454
supergrids, 625
super majors, 536
supertankers, 409
supervisory control and data acquisition (SCADA) system, 424
supply chain business units, 533
supporting facilities, 513
surface blowout, 258
surface casing, 284
surface control panel, 351
surface estate owner, 88
surface geographical studies
 aerial photographs and satellite images, 43–45
 oil and gas seeps, 45–46
surface handling of well fluids about, 325
 crude oil storage, 339–340
 emulsion heater types, 330–331
 free water removal, 327
 gas sampling, 345
 gas testing, 346
 LACT units, 344–345
 measuring and testing oil and gas, 342–344
 natural gas handling, 332–338
 oilfield emulsions, 328–329
 oil sampling, 341–342
 separating liquids from gases, 326
 surface hole, 176
Surface Transportation Board, 405
surfactant-polymer flooding, 322
surfactants, 306, 322
surrender clause, 97
swabbing, 301, 359
swamp barges, 209
sweet crude, 480
sweetening the gas, 336
swivel, 146
synclines, 15
synthetic-based drilling mud, 572
tagging and flagging, 380
tailgate meeting, 603
takeoff, 93
tank battery, 339
tank capacity table, 339
tank car design and manufacture, 399
tank car strings and unit trains, 400–401
tank construction, 340
tankers
 average-size, 410
cryogenic, 412
icebreaking, 411
natural gas, 412–413
ocean going, 408
spills from, 575–576
supertankers, 409
tank farms, 418, 421
TankTrain, 400
tank trucks, 396, 402, 404
tape coatings, 443
tar, 29
tariffs, 425
tar sands, 29
tax expense, 544
teamsters, 387
Technigaz Mark III system, 413
Technology Advancement of Multilaterals (TAML), 233
tectonic movement, 24
temperature hazards, 378
temperature measurement, 342
tenders, 204, 423
tendons, 219
tensioner, 452
term, 94
testing and commissioning, 449
thermal cracking, 493–494
thermal process, 323
thermal recovery
 cyclic steam injection, 324
 fireflooding, 324
 steam drive, 323
therms, 346
thief, 341
thief sampling, 341
3D seismic surveying technique, 51, 52
three-dimensional images, 71
three-dimensional well, 231
three-phase separator, 327
Thumper, 54
 tied back liner, 285
light gas sands, 532
value of money, 541
title examiner, 93
title opinions, 93
toluene, 478
tools and techniques
 advanced engineering, 234
downhole motor, 228–230
drill pipe design, 227
managed pressure drilling and density, 237–244
mud density use, 234–236
multilateral wells, 232–233
normal mud density, 236
orienting the hole, 230
rotary steerable tools, 231
vertical drilling tools, 232
top drive, 149, 175, 178
topographical maps, 66
topography, 43
torsion balance, 49
total recordable case rate, 600
towboats, 407–408
towed streamer acquisition, 57
tow travel, 408
Toxic Substances Control Act, 570
tractor-trailer, 402
trailer-mounted rigs, 351
trailers, 402
training
 about, 602
 emergency planning, 604
 safety meetings, 603
 special requirements, 604
 trajectory, 221
Trans-Alaska Pipeline System (TAPS), 414, 437
transmission lines, 519
transmit, 428
transportation
 about, 385
 crude oil pipelines, 415–416
 early methods of, 386–396
 economics and safety, 456–457
 liquefied natural gas (LNG), 458–467
 marine transportation, 406–415
 measurement and quality assurance, 425
 motor transportation, 402–405
 natural gas pipelines, 430–434
 offshore pipeline construction, 449–455
 pipeline construction on land, 434–449
 products pipeline, 426–430
 railway systems, 397–401
 summary, 468
transportation and refining, 383
trapping out
 pipe racking, 178–179
 using a rotary table, 176–177
 using a top drive, 178
traps
 about, 30
 anticlinical traps, 32–33
 combination traps, 36
 lenticular traps, 35
 stratigraphic traps, 34–35
 structural traps, 31
 unconformity, 35
traveling valve, 308
treating
 dehydration and desalting, 501
 hydrotreating, 502–503
 other methods, 504
 sulfur recovery, 504
 treatment with electricity, 229
 tripping, 184–186
 trucking companies, 402
 truck-mounted rigs, 351
 truck racks, 404
 truck tractor, 402
 trunklines, 389
 trunkline stations, 418, 420
 tubing, 289, 290
 tubing and packers
 about, 290–292
 gravel pack completions, 295–296
 multiple completions, 293
 subsurface safety valves, 294
 well servicing and repair, 358
 tubing head, 298
 tubingless completion, 289
 tugboats, 407
 turnkey contract, 130
 twistoffs, 253
 2D seismic surveying technique, 51
 two-phase separator, 326
ultime recovery estimate calculation, 547
ultra-large crude carriers (ULCC), 409
unconformity, 30, 35
unconsolidated reservoir, 295
unconventional drilling, 244–246
unconventional supplies vs. conventional supplies, 532
underbalanced condition, 257
underbalanced with light drilling mud, 241
underground injection control (UIC) program, 568
underground injection control wells, 584
United States, oil and gas production in, 77
unitization, 95
unitized properties, 84
units, 471
unit train, 401
unsaturated hydrocarbons, 480
unscheduled event, 257
upstream, 423
upstream business units, 533, 534
U.S. Army Corps of Engineers, 430
U.S. Coast Guard, 576
U.S. Department of Energy (DOE), 429
U.S. Department of Transportation (DOT), 399
U.S. Environmental Protection Administration (EPA), 430, 515, 580
U.S. Geological Survey (USGS), 45
U.S. laws and regulations, 399, 566–570
U.S. petroleum supply and demand, 474

vacuum distillation, 491
variable bore rams, 262
vehicle types, 402
velocity, 200
Venezuela, 112
vertical cable survey, 56
vertical cross sections, 68
vertical support members (VSMs), 439
very large crude carriers (VLCC), 409
Vibroseis, 55
viscosity breaking, 494
viscous molecules, 29
vitrification treatment, 588
volatile liquids, 412
volatile organic compounds (VOCs), 517, 567
volatilization, 587
volumetric density, 621
volumetric method, 204
wagon and water, 387

wait and weight method, 264
walking beam, 283
warranty clause, 96
washover pipe, 250
washpipe, 250
water, 37
water-alternating gas (WAG) injection, 321
water drive, 315–316
waterflooding, 320
water quality, 516, 583–584
wax, 498
weight and torque-on-bit, 197
wellbore pressure, 260
well completion, 278, 284
completion types, 286–289
production casing and liners, 284–285
tubing and packers, 290–296
wellhead, 296–300
well control. See also out-of-control well, 257–268
well cores, 63
wellhead
about, 296–297
casinghead, 298
Christmas tree, 298
subsea wellheads, 299–300
tubing head, 298
well kick, 244
well logs
about, 59
acoustic logs, 62
drillers log, 60
electric logs, 61
nuclear logs, 61
wireline logs, 60
well service, 349
well service and workover service and workover equipment, 349–356
well servicing and repair, 356–359
well servicing and repair
beam pumping equipment, 356–358
swabbing, 359
tubing and packers, 358
well testing
bottomhole pressure test, 318
potential or production tests, 317
well unloading, 301
well workover, 349
West Texas Intermediate (crude oil index), 534
wet trees, 368, 373
wheel ditcher, 438
wild well, 225
wind energy, 625–626
windows, 232
wind resources, 626
wire valve, 298
wireline, 351
wireline logging, 189–191
wireline logs, 60
wireline units, 351–352
wooden barrels, 388
workers compensation, 599
working at heights, 380
working interest, 87
workover fluid, 356
workover operations
casing and production liner repair, 362
plug-back cementing, 361
sand cleanout, 359–360
sand control, 361
squeeze cementing, 362
workovers, 281
World Carbon Dioxide Emissions from the Use of Fossil Fuels, 610
world petroleum supply and demand, 474
worst case outcome, 547
xylene, 478
To obtain additional training materials, contact:

PETEX
THE UNIVERSITY OF TEXAS AT AUSTIN
PETROLEUM EXTENSION SERVICE
10100 Burnet Road, Bldg. 2
Austin, TX 78758

Telephone: 512-471-5940
or 800-687-4132
FAX: 512-471-9410
or 800-687-7839
E-mail: petex@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex

To obtain information about training courses, contact:

PETEX
LEARNING AND ASSESSMENT CENTER
THE UNIVERSITY OF TEXAS
4702 N. Sam Houston Parkway West, Suite 800
Houston, TX 77086

Telephone: 281-397-2440
or 800-687-7052
FAX: 281-397-2441
E-mail: plach@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex