

LIFE OFFSHORE

Second Edition

miversity of texas at Mustin **ROTARY DRILLING SERIES**

Unit I: The Rig and Its Maintenance

Lesson 1:	The Rotary	Rig and Its	Components
-----------	------------	-------------	------------

- Lesson 2: The Bit
- Drill String and Drill Collars Lesson 3:
- Rotary, Kelly, Swivel, Tongs, and Top Drive Lesson 4:
- Lesson 5: The Blocks and Drilling Line
- Lesson 6: The Drawworks and the Compound
- Lesson 7: Drilling Fluids, Mud Pumps, and Conditioning Equipment
- Diesel Engines and Electric Power Lesson 8:
- Lesson 9: The Auxiliaries
- Lesson 10: Safety on the Rig

Unit II: Normal Drilling Operations

- Lesson 1: Making Hole
- Lesson 2: **Drilling Fluids**
- Lesson 3: Drilling a Straight Hole
- Casing and Cementing Lesson 4:
- Lesson 5: Testing and Completing

Unit III: Nonroutine Operations

- Controlled Directional Drilling Lesson I:
- Lesson 2: **Open-Hole Fishing**
- **Blowout Prevention** Lesson 3:

Unit IV: Man Management and Rig Management

Unit V: Offshore Technology

- Wind, Waves, and Weather Lesson 1:
- Lesson 2: Spread Mooring Systems
- Buoyancy, Stability, and Trim Lesson 3:
- Lesson 4 Jacking Systems and Rig Moving Procedures
- Lesson Diving and Equipment
- Vessel Inspection and Maintenance Lesson 6:
- Lesson 7: Helicopter Safety
- Lesson 8: Orientation for Offshore Crane Operations
- Life Offshore Lesson 9:

Petroli

Lesson 10: Marine Riser Systems and Subsea Blowout Preventers

Contents **Figures** v te university of texas at Austin Foreword vii Units of Measurement viii The Life 1 Understanding the Offshore Job Advantages and Disadvantages Prework Safety and Survival Training To summarize 8 Traveling to the Offshore Facility **Crew Boats** 10 Helicopters 14 To summarize 17 The Work Place 19 Types of Offshore Facilities 19 Fundamentals of Rotary Drilling To summarize 33 The Offshore Crew 35 35 The Jobs **Preemployment Training** 43 45 On the Job Special Safety Procedures 46 To summarize 50 Personal Time on the Rig 53 Living Quarters Medical Meals Recreation 58 Advancement 59 60 To summarize Appendix 61 Glossary 65 **Review Questions** 71 Answers 77

Units of Measurement

Throughout the world, two systems of measurement dominate: the English system and the metric system. Today, the United States is one of only a few countries that employs the English system.

The English system uses the pound as the unit of weight, the foot as the unit of length, and the gallon as the unit of capacity. In the English system, for example, 1 foot equals 12 inches, 1 yard equals 36 inches, and 1 mile equals 5,280 feet or 1,760 yards.

The metric system uses the gram as the unit of weight, the metre as the unit of length, and the litre as the unit of capacity. In the metric system, 1 metre equals 10 decimetres, 100 centimetres, or 1,000 millimetres. A kilometre equals 1,000 metres. The metric system, unlike the English system, uses a base of 10; thus, it is easy to convert from one unit to another. To convert from one unit to another in the English system, you must memorize or look up the values.

In the late 1970s, the Eleventh General Conference on Weights and Measures described and adopted the Système International (SI) d'Unités. Conference participants based the SI system on the metric system and designed it as an international standard of measurement.

The *Rotary Drilling Series* gives both English and SI units. And because the SI system employs the British spelling of many of the terms, the book follows those spelling rules as well. The unit of length, for example, is *metre*, not *meter*. (Note, however, that the unit of weight is *gram*, not *gramme*.)

To aid U.S. readers in making and understanding conversion to the SI system, we include the following table.

PetroleumExtensi

Quantity or Property	English Units	Multiply English Units By	To Obtain These SI Units millimetres (mm) centimetres (cm) metres (m) metres (m) metres (m)
	-	0	
Length,	inches (in.)	25.4	millimetres (mm)
depth,	feet (ft)	2.54 0.3048	centimetres (cm)
or height	yards (yd)	0.9144	metres (m) metres (m)
	miles (mi)	1609.344	metres (m)
	nines (nin)	1.61	kilometres (km)
Hole and pipe diameters, bit	size inches (in.)	25.4	millimetres (mm)
Drilling rate	feet per hour (ft/h)	0.3048	metres per hour (m/h)
Weight on bit	pounds (lb)	0.445	decanewtons (dN)
Nozzle size	32nds of an inch	0.8	millimetres (mm)
	barrels (bbl)	0.159	cubic metres (m ³)
	college per strake (col/stral	159	https:// L
	gallons per stroke (gal/strok	(e) 0.00379 29.57	cubic metres per stroke (m ³ /stroke) millilitres (mL)
Volume	ounces (oz) cubic inches (in. ³)	16.387	cubic centimetres (mL)
v orunne	cubic feet (ft ³)	28.3169	litres (L)
		0.0283	cubic metres (m ³)
	quarts (qt)	0.9464	litres (L)
	gallons (gal)	3.7854	litres (L)
	gallons (gal)	0.00379	cubic metres (m ³)
	pounds per barrel (lb/bbl)		kilograms per cubic metre (kg/m ³)
	barrels per ton (bbl/tn)	0.175	cubic metres per tonne (m^3/t)
	gallons per minute (gpm)		cubic metres per minute (m ³ /min)
Pump output	gallons per hour (gph)	0.00379	cubic metres per hour (m³/h)
and flow rate	barrels per stroke (bbl/strok	(e) 0.159	cubic metres per stroke (m ³ /stroke)
	barrels per minute (bbl/mi		cubic metres per minute (m ³ /min)
Pressure	pounds per square inch (ps	si) 6.895	kilopascals (kPa)
		0.006895	megapascals (MPa)
Temperature	degrees Fahrenheit (°F)	°F - 32 1.8	degrees Celsius (°C)
Thermal gradient	1°F per 60 feet		1°C per 33 metres
	ounces (oz)	28.35	grams (g)
Mass (weight)	pounds (lb)	453.59	grams (g)
		0.4536	kilograms (kg)
	tons (tn)	0.9072	tonnes (t)
	pounds per foot (lb/ft)	1.488	kilograms per metre (kg/m)
Mud weight	pounds per gallon (ppg) pounds per cubic foot (lb/ft	119.82 16.0	kilograms per cubic metre (kg/m ³) kilograms per cubic metre (kg/m ³)
Pressure gradient	pounds per square inch		
- Europal State	per foot (psi/ft)	22.621	kilopascals per metre (kPa/m)
Funnel viscosity	seconds per quart (s/qt)	1.057	seconds per litre (s/L)
Yield point	pounds per 100 square feet (lb/1	,	pascals (Pa)
Gel strength	pounds per 100 square feet (lb/1	,	pascals (Pa)
Filter cake thickness	32nds of an inch	0.8	millimetres (mm)
Power Area	horsepower (hp)	0.75	kilowatts (kW)
	square inches (in. ²)	6.45	square centimetres (cm^2)
A 100	square feet (ft^2)	0.0929	square metres (m^2)
Area	square yards (yd^2)	0.8361	square metres (m^2)
	square miles (mi ²) acre (ac)	2.59 0.40	square kilometres (km²) hectare (ha)
	ton-miles (tn • mi)	14 317	megajoules (MI)
Drilling line wear	ton-miles (tn•mi)	14.317 1.459	megajoules (MJ) tonne-kilometres (t•km)

English-Units-to-SI-Units Conversion Factors

The Life

of texas at Austin Tew hires on an offshore drilling rig, platform, or other offshore facility enter an interesting and unique world. These jobs are not for everyone. They demand hard work in some very challenging situations.

Although workers familiar with onshore drilling and production may think they are well-informed about the industry, the offshore oil and gas environment is unique. The major difference is the living conditions. Offshore work requires being away from home and family for long periods of time. Most offshore facilities are not even in sight of land (fig. 1). Offshore facilities are self-contained communities where employees live, work, and often spend their off time.

Understanding the Offshore Job

Figure 1. Statoil's Gullfaks A platform in the North Sea. Note the helideck on the platform. (Courtesy of Statoil ASA, photo by Oyvind Hagen)

Traveling to the **Offshore Facility**

otexasathustin ffshore crews get a free ride to and from the offshore facility. Today, travel to offshore facilities is mainly by helicopter because it is much faster (fig. 8). However, travel to the offshore site may be by boat depending on the distance to the location, weather conditions, and time factors. The gathering point for departure from land to the offshore facility is usually the company's operation base or a local airport.

Prior to traveling to or from the offshore facility by boat or helicopter, the crewmembers must have in their possession all required personal identification including a passport and/or visa, if necessary. Crew members should have been briefed about appropriate clothing and safety gear for transport whether by helicopter or boat. All carry-on items and baggage must conform to the transport company and the crewmember's employer regulations.

Figure 8. Helicopter transporting offshore crews (Courtesy of Bell Helicopter Textron, Inc.)

The Work Place

The main categories of offshore facilities are offshore drilling rigs and offshore production platforms. A small number of offshore facilities are able to combine both drilling and production operations.

The offshore drilling rig is used to drill for oil and natural gas. Usually, the drilling rig is not designed for the production or extraction of oil or gas. It is only meant to create the hole for the future production of oil and/or gas.

The *offshore production platform* is a much larger structure housing workers and the equipment needed to produce oil and natural gas. The platform may be moored to the seafloor or floating. Platforms may have several wellheads and be connected to many subsea wells that are often miles away from the platform itself.

The type of offshore facility used depends on the distance from shore and the depth of the water. Another factor in deciding the type of offshore facility to build is the size of the field that will be drilled. Some facilities are mobile and can be floated or moved to various locations on the field area, whereas others are more permanently anchored to the sea. Most offshore facilities including drillships have a helideck used by helicopters for crew transfer, equipment loading, and delivery of supplies. Drilling rigs and production platforms perform different functions offshore. Some facilities are used for oil or gas and others may be used for both. The thing they all have in common is that people live and work on these facilities offshore.

¹Source information from the National Ocean Industries Association (NOIA) Fact Sheet on Hurricanes and the Offshore Energy Industries, 2006. Types of Offshore Facilities¹

The Offshore Crew

The Jobs

Most jobs on an onshore rig are also found offshore. Because of the marine environment and the fact that personnel live and work on the offshore facility, additional support people of varying skill levels are needed. Some jobs are very technical and require a degree or extensive training. Others require physical and organizational skills. Some jobs are not directly involved with drilling but essential to life offshore. Every job on the rig is important to the operation and safety of the offshore facility (fig. 30).

	DRILLING	Mates—senior, 1st, 2nd, 3rd	Catering
	Offshore Installation Manager	Dynamic Positioning Operator	Catering Manager
	Drilling Superintendent	Stability Technician	Chief Steward
	Toolpusher	Able-Bodied Seaman	Steward
	Driller	Ordinary Seaman	Cook
	Assistant Driller	Cleaner/Painter	Galley hands (Kitchen Utility)
	Derrickman	Deckhand	
	Pipehandling Technician	Wiper	OTHER
	Mudman	~	Scaffolder
	Mud Engineer	MECHANICAL DEPARTMENT	Radio Operator
	Pumpman	Chief Mechanic	Medic
	Pump Mechanic	Mechanic	Storeman
	Welder	Assistant Mechanic	Oiler
	Crane Operator	Motorman	Bedroom Hand
	Assistant Crane Operator	Engine Room Assistant	Company Man
	Roughneck	Maintenance Supervisor	Administrative Staff
	Roustabout	Maintenance Foreman	Boiler
	Safety and Training Officer		Chemical Crew
		ELECTRICAL DEPARTMENT	Communication Crew
	MARINE DEPARTMENT	Chief Electrician	Metallurgical Engineer
	Barge Engineer	Electrician	Computer Crew
	Barge Supervisor	Maintenance Supervisor	Geologist
	Control Room Operator (CRO)	Electronic Technician	Geophysical Engineer
	Assistant CRO	Electrical/Electronic Supervisor	Geotechnical Engineer
\sim	Ballast Control Operator	Subsea	Sandblasting Crew
X	Captain	Subsea Engineer	Seismic Crew
¥.	Chief Engineer	Assistant Subsea Engineer	Warehouseman

Figure 30. Offshore jobs (Source: Offshore Oil Rig Jobs http://offshoreoilrigjobs. tripod.com/index.htm)

of texas at Austin **Personal Time** on the Rig

Half of the 24-hour day of an offshore worker is spent on duty status, either actually performing physical work or on standby, ready to respond to a need for service (fig. 43).

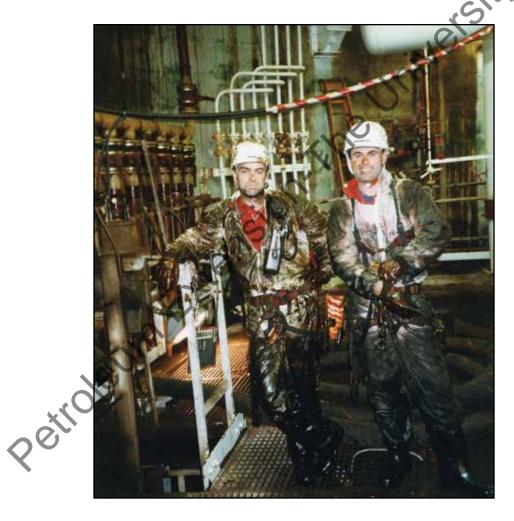
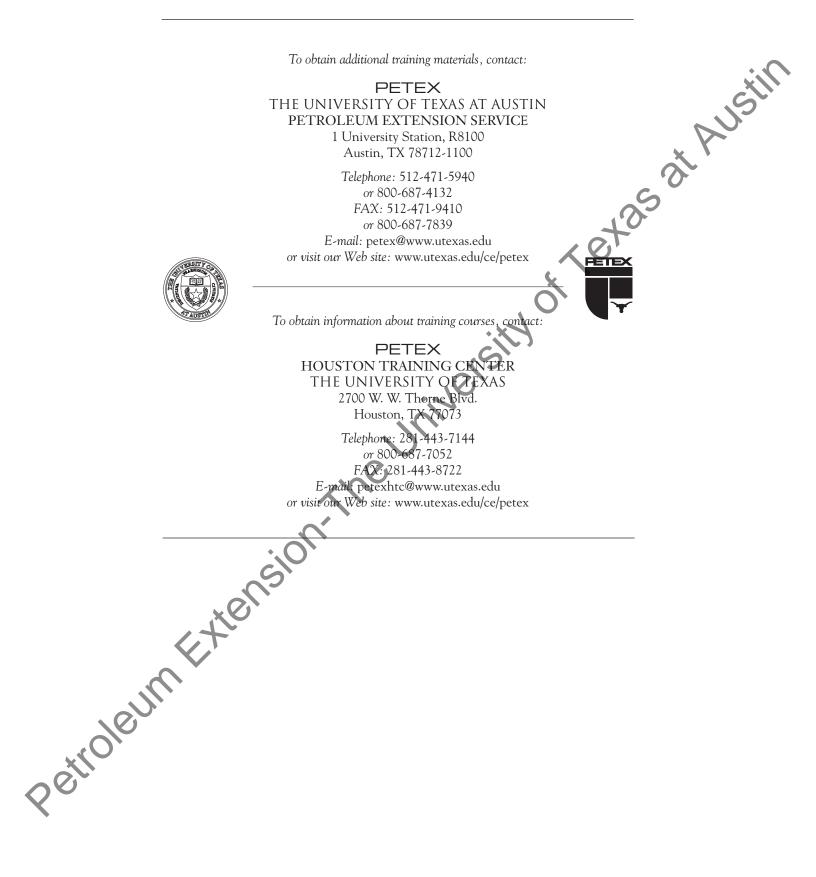



Figure 43. Offshore workers Garve Scott-Lodge (left) and Brian James at work (Courtesy of Oilrig-photos.com, *photo by Ian Jack)*

Extension the University of

2.50920 0-88698-220-0

225 at Austin