RO是要Y DRILLING SERIES

Unit I: The Rig and Its Maintenance
Lesson 1: The Rotary Rig and Its Components
Lesson 2: The Bit
Lesson 3: Drill String and Drill Collars
Lesson 4: Rotary, Kelly, Swivel, Tongs, and Top Drive
Lesson 5: The Blocks and Drilling Line
Lesson 6: The Drawworks and the Compound
Lesson 7: Drilling Fluids, Mud Pumps, and Conditioning Equipment
Lesson 8: Diesel Engines and Electric Power
Lesson 9: The Auxiliaries
Lesson 10: Safety on the Rig

Unit II: Normal Drilling Operations
Lesson 1: Making Hole
Lesson 2: Drilling Fluids
Lesson 3: Drilling a Straight Hole
Lesson 4: Casing and Cementing
Lesson 5: Testing and Completing

Unit III: Nonroutine Operations
Lesson 1: Controlled Directional Drilling
Lesson 2: Open-Hole Fishing
Lesson 3: Blowout Prevention

Unit IV: Man Management and Rig Management

Unit V: Offshore Technology
Lesson 1: Wind, Waves, and Weather
Lesson 2: Spread Mooring Systems
Lesson 3: Buoyancy, Stability, and Trim
Lesson 4: Jacking Systems and Rig Moving Procedures
Lesson 5: Diving and Equipment
Lesson 6: Vessel Inspection and Maintenance
Lesson 7: Helicopter Safety
Lesson 8: Orientation for Offshore Crane Operations
Lesson 9: Life Offshore
Lesson 10: Marine Riser Systems and Subsea Blowout Preventers
Contents

Figures v
Tables vii
Foreword ix
Acknowledgments xi
Units of Measurement xii
Introduction 1
Well Planning 5

Drill Bits 9
 Bit Selection 9
 Bit Design 11
 How Bits Drill 12
 Roller-cone Bits 13
 Natural Diamond Bits 19
 Fixed-Cutter Bits 21
 Hybrid Bits 23
 Special-Purpose Bits 24
 Bit Classification 26
 Dull Bit Evaluation 33

Drilling Performance Records 45

Weight on Bit and Rotary Speed 51

Special Considerations 57

Rate of Penetration Control 65

Drilling Mud 71
 Mud Characteristics that Affect ROP 73

Air or Gas Drilling 83
 Air Drilling Equipment 84

Bit Hydraulics 91
 Hydraulics Calculations 94

Formation Properties 101

Glossary 111

Review Questions 131

Index 137

Answers to Review Questions 145
Throughout the world, two systems of measurement dominate: the English system and the metric system. Today, the United States is one of only a few countries that employ the English system.

The English system uses the pound as the unit of weight, the foot as the unit of length, and the gallon as the unit of capacity. In the English system, for example, 1 foot equals 12 inches, 1 yard equals 36 inches, and 1 mile equals 5,280 feet or 1,760 yards.

The metric system uses the gram as the unit of weight, the metre as the unit of length, and the litre as the unit of capacity. In the metric system, 1 metre equals 10 decimetres, 100 centimetres, or 1,000 millimetres. A kilometre equals 1,000 metres. The metric system, unlike the English system, uses a base of 10; thus, it is easy to convert from one unit to another. To convert from one unit to another in the English system, you must memorize or look up the values.

In the late 1970s, the Eleventh General Conference on Weights and Measures described and adopted the Systeme International (SI) d’Unites. Conference participants based the SI system on the metric system and designed it as an international standard of measurement.

The Rotary Drilling Series gives both English and SI units. And because the SI system employs the British spelling of many of the terms, the book follows those spelling rules as well. The unit of length, for example, is metre, not meter. (Note, however, that the unit of weight is gram, not gramme.)

To aid U.S. readers in making and understanding the conversion system, we include the table on the next page.

Units of Measurement

- - -
<table>
<thead>
<tr>
<th>Quantity or Property</th>
<th>English Units</th>
<th>Multiply English Units By</th>
<th>To Obtain These SI Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length, depth, or height</td>
<td>inches (in.)</td>
<td>25.4</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td></td>
<td>feet (ft)</td>
<td>0.3048</td>
<td>metres (m)</td>
</tr>
<tr>
<td></td>
<td>yards (yd)</td>
<td>0.9144</td>
<td>metres (m)</td>
</tr>
<tr>
<td></td>
<td>miles (mi)</td>
<td>1609.344</td>
<td>kilometres (km)</td>
</tr>
<tr>
<td>Hole and pipe diameters, bit size</td>
<td>inches (in.)</td>
<td>25.4</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td>Drilling rate</td>
<td>feet per hour (ft/h)</td>
<td>0.3048</td>
<td>litres (L)</td>
</tr>
<tr>
<td>Weight on bit</td>
<td>pounds (lb)</td>
<td>0.445</td>
<td>kilogram-force (N)</td>
</tr>
<tr>
<td>Nozzle size</td>
<td>32nds of an inch</td>
<td>0.8</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td>Volume</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cubic inches (in.³)</td>
<td></td>
<td>16.387</td>
<td>cubic centimetres (cm³)</td>
</tr>
<tr>
<td>Cubic feet (ft³)</td>
<td></td>
<td>28.3169</td>
<td>litres (L)</td>
</tr>
<tr>
<td>Quarts (qt)</td>
<td></td>
<td>0.9464</td>
<td>litres (L)</td>
</tr>
<tr>
<td>Gallons (gal)</td>
<td></td>
<td>3.7853</td>
<td>litres (L)</td>
</tr>
<tr>
<td>Gallons (gal)</td>
<td></td>
<td>0.00379</td>
<td>cubic metres (m³)</td>
</tr>
<tr>
<td>Pounds per barrel (lb/bbl)</td>
<td></td>
<td>2.2495</td>
<td>kilograms per cubic metre (kg/m³)</td>
</tr>
<tr>
<td>Barrels per ton (bbl/tn)</td>
<td></td>
<td>0.175</td>
<td>cubic metres per tonne (m³/t)</td>
</tr>
<tr>
<td>Pump output and flow rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallons per minute (gpm)</td>
<td></td>
<td>0.00379</td>
<td>cubic metres per minute (m³/min)</td>
</tr>
<tr>
<td>Gallons per hour (gph)</td>
<td></td>
<td>0.00379</td>
<td>cubic metres per hour (m³/h)</td>
</tr>
<tr>
<td>Barrels per stroke (bbl/stroke)</td>
<td></td>
<td>0.159</td>
<td>cubic metres per stroke (m³/stroke)</td>
</tr>
<tr>
<td>Barrels per minute (bbl/min)</td>
<td></td>
<td>0.159</td>
<td>cubic metres per minute (m³/min)</td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pounds per square inch (psi)</td>
<td></td>
<td>6.895</td>
<td>kilopascals (kPa)</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degree Fahrenheit (°F)</td>
<td></td>
<td>°F - 32</td>
<td>degrees Celsius (°C)</td>
</tr>
<tr>
<td>Mass (weight)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ounces (oz)</td>
<td></td>
<td>28.35</td>
<td>grams (g)</td>
</tr>
<tr>
<td>Pounds (lb)</td>
<td></td>
<td>453.59</td>
<td>grams (g)</td>
</tr>
<tr>
<td>Tons (tn)</td>
<td></td>
<td>0.4536</td>
<td>kilograms (kg)</td>
</tr>
<tr>
<td>Pounds per foot (lb/ft)</td>
<td></td>
<td>0.9072</td>
<td>tonnes (t)</td>
</tr>
<tr>
<td>Mud weight</td>
<td></td>
<td>1.488</td>
<td>kilograms per metre (kg/m)</td>
</tr>
<tr>
<td>Pressure gradient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pounds per square inch (psi)</td>
<td></td>
<td>22.621</td>
<td>kilopascals per metre (kPa/m)</td>
</tr>
<tr>
<td>Funnel viscosity</td>
<td></td>
<td>1.057</td>
<td>seconds per litre (s/L)</td>
</tr>
<tr>
<td>Yield point</td>
<td></td>
<td>0.48</td>
<td>pascals (Pa)</td>
</tr>
<tr>
<td>Gel strength</td>
<td></td>
<td>0.48</td>
<td>pascals (Pa)</td>
</tr>
<tr>
<td>Filter cake thickness</td>
<td></td>
<td>0.8</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td>Power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horsepower (hp)</td>
<td></td>
<td>0.75</td>
<td>kilowatts (kW)</td>
</tr>
<tr>
<td>Area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Square inches (in.²)</td>
<td></td>
<td>6.45</td>
<td>square centimetres (cm²)</td>
</tr>
<tr>
<td>Square feet (ft²)</td>
<td></td>
<td>0.0929</td>
<td>square metres (m²)</td>
</tr>
<tr>
<td>Square yards (yd²)</td>
<td></td>
<td>0.8361</td>
<td>square metres (m²)</td>
</tr>
<tr>
<td>Square miles (mi²)</td>
<td></td>
<td>2.59</td>
<td>square kilometres (km²)</td>
</tr>
<tr>
<td>Acre (ac)</td>
<td></td>
<td>0.40</td>
<td>hectare (ha)</td>
</tr>
<tr>
<td>Drilling line wear</td>
<td></td>
<td>14.317</td>
<td>megajoules (MJ)</td>
</tr>
<tr>
<td>Tonne-kilometres (t•km)</td>
<td></td>
<td>1.459</td>
<td>tonne-kilometres (t•km)</td>
</tr>
<tr>
<td>Torque</td>
<td></td>
<td>1.3558</td>
<td>newton metres (N•m)</td>
</tr>
</tbody>
</table>
It's true: to drill a hole you put the bit on the bottom and turn it to the right. In simple terms, that's how you "make hole"; but, of course, the whole story is more complicated. What type of bit do you put on bottom? How much weight do you put on the bit? Do you rotate the bit rapidly or slowly? What about mud properties? What should pump pressure be? All these questions, and more, are related and critical to drilling progress. Thus, if one factor changes, it can result in unforeseen difficulties unless the crew makes other adjustments as drilling proceeds.

Drilling situations vary widely throughout the world. A successful drilling program in South Louisiana could be wrong for a contractor in Oklahoma's hard-rock country. A well plan for drilling the deep overpressured gas zones of West Texas could not be used in California's shallow tar sands. A wildcat well only a few miles from a producing field can encounter vastly different conditions. The field may be in flat-lying beds, for instance, while the wildcat may encounter steeply dipping beds. Further, not all wells are drilled vertically. The operator may specify that a deviated or a horizontal hole be kicked off at a certain depth.

To safely operate in such widely divergent conditions, every drilling operation must be carefully planned. Whatever the conditions, the drilling contractor's goal is the same: to drill a usable hole to the operator's specifications for the least possible cost. Indeed, the contractor's survival depends on meeting that goal. The contractor must usually accomplish the objectives set out in the drilling contract (fig. 1) in the shortest
Drill Bits

In this chapter:
• Reasons for selecting a bit
• Types of bits
• Classification of bits
• Evaluation of dull bits

The ideal bit is always the one that does the job for the least overall cost, but the great variety of available bits complicates the bit selection process. Manufacturers make bits for virtually every drilling need. Given reasonable time, bit manufacturers can deliver custom-designed bits for any given drilling situation. A bit supplier can review all previous drilling records in an area and deliver a customized, recommended bit program to customers (fig. 4).

Bit Selection

Figure 4. A recommended bit or well program
Drilling Performance Records

In this chapter:

- Bit records
- Daily drilling reports
- Measurement-while-drilling systems
- Information networks

Accurate drilling performance records are of great value. They directly influence the selection of bits and help determine proper operating procedures that impact total drilling costs.

Bit records show many critical facts about the operation (fig. 44). The most important statistics describe each bit run, including bit type, drilling hours, footage drilled, nozzle size, reason pulled, and dull condition. Other information shown on the bit record includes the rotary weight and speed, circulation system, and deviation, all of which affect cost calculations.

The daily drilling report is another important performance record (fig. 45). The report is a 24-hour record of the drilling operation and provides a complete and accurate account of the drilling progress by each tour. The driller signs and is responsible for the report on his tour. The daily drilling report helps achieve consistency in the drilling process because each driller can refer to the progress made by the last tour. Continuity of operations is assured because the report sets out the current conditions or problems assumed by the new crew, including bit performance, mud program, drilling assembly, and time required for various rig operations or mechanical problems. The operator will usually extract information from the rig’s daily report and condense it for office use (fig. 46).

Bit records include:

- Description of each bit
- Number of hours used
- Footage drilled
- Reason bit was pulled
- Condition after use
The mechanical factors of bit weight and rotary speed must be coordinated with bit selection to achieve optimal drilling rates. Generally, an increase in either weight or rpm increases the rate of penetration, provided the right bit is in place and bottomhole cleaning is attained through proper bit hydraulics. However, weight and rpm cannot be increased indiscriminately without considering other factors. The extra wear imposed on the bit bearings and cutting structures must be considered. For instance, drill string failure is more common at high rotary speed. The increase in shock loads can shatter bit teeth, especially if the formation contains both soft and hard layers. One extra trip can exceed the costs of a few hours of slower penetration. Hole deviation may also become a problem with increased weight unless the drill string is not stiff and well stabilized. Also, as the bit becomes dull, hole deviation tends to increase. When all factors are considered, simply increasing the weight or rotary speed will not always result in least-cost drilling.

With automatic driller technology, it is possible to maintain a steady weight on the bit. This technology enhances penetration rates significantly and increases both the bit life and number of reusable bits. Drilling with automatic drillers can control weight, differential pressure, or rotary amps (torque), all of which contribute to lower drilling costs per foot.
Special Considerations

In this chapter:

- The effects of drill collars on bit weight and rotary speed
- The effects of deviations and doglegs
- The effects of a rig’s power system
- Slant and horizontal drilling
- Downhole motors

Specific contract requirements, the rig’s capability, and other factors must be considered when calculating the appropriate bit weight and rotary speed.

For example, additional, or heavier, drill collars may be needed to provide the added weight or stiffness. If more and heavier drill collars are required, one question the rig owner must ask is, “Can the derrick safely handle the heavier load?” Other considerations include costs. Drill collars are expensive to buy, or rent, and to maintain. They are hard to handle and require safety clamps and lifting subs that add to the trip time. If ten stands (30 collars) are used, it may require several hours to break out and make up the collars in a round trip.

Another consideration is that deviation and doglegs tend to develop when the bit weight is changed (fig. 49). If the drilling contract imposes strict deviation controls, or if dipping formations are present, increasing the bit weight to attain faster penetration may be ill-advised.

Figure 49. Dogleg produced by reduced weight
Variations in the drilling rate are normal. Changes can indicate bit wear, change in formation, weight, rotary speed, or hydraulics. The driller must evaluate all these possibilities before taking corrective action.

An unworn bit matched to the right formation, and properly run, will drill faster than a worn bit or a bit not matched to the formation. A driller can use this fact to determine the optimum weight to maintain by measuring how much time is required to drill a certain distance—1 ft, 10 ft (1 m, 10 m), or a kelly length. This time measurement is then converted to ft/h or m/h (the usual basis for comparing bit performance) or minutes (min) per ft or m. The rig’s drilling rate recorder (Geolograph™) allows a quick visual evaluation of the drilling rate (fig. 58). Computers tied directly to the rig instruments are also used to collect such data. If automatic devices are not available, the driller can determine drilling rate by marking the kelly, maintaining a constant speed and bit weight, and then measuring the time it takes to drill one foot. This provides a rough estimate of bit performance under that particular weight and speed.
Drilling Mud

In this chapter:
- The basic functions of drilling mud
- Three components of drilling mud
- Mud characteristics that affect penetration rate
- Mud costs

Drilling mud properties impact the penetration rate by performing functions vital to cost-effective drilling (fig. 60). The basic functions of drilling mud are to:
- Clean the bit teeth and the bottom of the hole
- Transport formation cuttings to the surface
- Prevent formation fluids from entering the wellbore causing a kick or blowout
- Protect and support the walls of the wellbore
- Cool and lubricate the bit and drill string
- Provide hydraulic power for downhole motors or turbines (see figs. 52 and 53)
- Help detect the presence of oil, gas, or saltwater in formations

Drilling mud contains three types of material—one liquid and two solids. The liquid component may be water (water base) or oil (oil base), or a mixture of both.

One type of solid is reactive with liquid. The main reactive solids in most drilling muds are clays. Clays swell in water and thicken the mud. The other type of solids is nonreactive which means they do not react with the liquid phase of the mud. Nonreactive solids include formation cuttings of all sizes. Solids are generally undesirable because they add weight to the mud and are abrasive to equipment. One common nonreactive solid is barite, which is purposely added to the mud to increase the weight as needed to control formation pressure.
In certain areas, use of air or gas rather than mud as the circulating fluid permits much lower-cost drilling. Generally, air or gas drilling is used in areas where the subsurface formations are older, hard rocks, and where soft, sloughing shale is not a problem. Moreover, formation water production cannot exceed 50 barrels per hour (bbl/h) or 8 m³/h. These requirements virtually eliminate the Gulf Coast and offshore for the application of air or gas drilling.

Where conditions are favorable, air or gas drilling can offer advantages:
• Penetration rates are faster than drilling with mud because air or gas is the least-dense circulation medium available. An air or gas column does not create a hold-down effect because it holds very little hydrostatic pressure on the rock. Air removes the cuttings instantly so there is no redrilling of loose chips and less dulling of the bit.
• Air or gas does an excellent job of cooling the bit. As air or gas leaves the bit, it expands and cools. Effective cooling reduces bit bearing wear, which means that bits last longer.
• Formation changes are instantly recognized by changes at the blooey line—the line out of which the air or gas and cuttings blow to the surface. Rock type can be easily identified.
• Shows of water, gas, or oil are quickly evident. Formation evaluation is thus accomplished while drilling, negating the need for expensive testing operations.
Bit Hydraulics

In this chapter:

- Hydraulic horsepower
- Pressure losses
- Calculating variable related to hydraulics
- Bit nozzles

Hydraulics deals with the behavior of a liquid in motion. Bit hydraulics concerns the circulating pressure available at the bit to clean the bottom of the hole. The hydraulic horsepower of the circulating fluid at the bit is critical to the penetration rate because this horsepower removes the cuttings from the bottom of the hole. Hydraulic horsepower at the bit must be sufficient to efficiently remove the cuttings. If the cuttings are not removed quickly, the bit merely regrinds them instead of deepening the hole. Increasing the weight and rotary speed does not increase the rate of penetration if the hole is not cleared of cuttings.

Hydraulic horsepower is determined by pump output, which is usually measured in gallons per minute or cubic metres per minute (gpm or m³/min), and circulating pressure in psi or kPa. A change in either output or pressure directly affects hydraulic horsepower at the bit. The mud pumps generate hydraulic pressure and transmit it down the drill string, out of the bit, and up the annulus to the surface. When the mud reaches the surface, all its pressure is used up. The mud may leave the pump under thousands of pounds of pressure but at every point in the system pressure losses occur (fig. 70). Substantial pressure is lost as the mud travels through the surface equipment and down the drill string because the inside of the pipes is rough.

At the bit, the hydraulic horsepower must be high enough to remove the cuttings quickly and effectively.
Formation Properties

In this chapter:

- Formation characteristics that affect drilling
- Well prognoses
- Drilling breaks
- The effects of different types of rocks on drilling
- Formation dip

The nature of the formation being drilled greatly influences the drilling rate and other important aspects of the overall drilling operation. Petroleum geologists gather information from nearby wells and predict formation depths (tops), rock character, and geological hazards. A geologist prepares a well prognosis setting out this information and the rig manager or drilling superintendent will usually have access to it. The bit program may be based in part on the information in the prognosis. A geologist will often be on site to examine well cuttings, call formation tops, help pick casing, logging, and coring points, as well as the total depth. The operator may also engage a mud logging company to provide full time, continuous monitoring of the mud stream for shows of oil and gas and to identify the formations being drilled.

In general, porous and permeable formations drill faster than impermeable formations. If the bit is drilling an impermeable zone and then enters a permeable zone, a drilling break may occur. A drilling break is an increase in the rate of penetration. If a drilling break occurs in a possible pay horizon, drilling may be stopped and the cuttings, along with any shows of hydrocarbons in the mud, circulated to the surface. Formation testing may be conducted at that point or an evaluation may be deferred until logs are run.

Sudden increases in a bit’s ROP—called drilling breaks—often occur when drilling an impermeable zone and then entering a permeable zone.
Index

- adjustable kick-off (AKO) motors, 62
- aerated mud, 90
- air compressors, 85
- air drilling equipment
 - air compressors, 84, 85
 - blowout preventer and lines, 88
 - chemical treatment equipment, 86
 - layout, 87
 - mist pumps, 86
 - rotating head blowout preventers, 86
- air hammer drilling tool, 86
- air or gas drilling
 - about, 83-84
 - advantages of, 83, 84
 - applications for, 83
 - bit cooling, 83
 - equipment, 84-90
 - vs. mud drilling, 90
 - penetration rates of, 83
 - water handling, 84
- air-hammer bits, 24, 25
- annular velocities, 90
- API Bulletin D10, 5
- automatic driller technology, 51

- balling up
 - cone skidding, 36
- hydrating clays, 81
- oil in mud, 81
- shales, 81
- soft formations, 12, 14-15, 23, 30, 40
- surfactant, 85, 89
- water-base mud effects, 102

- barite, 71, 75, 79, 82
- barite mud-weight adjustment, 77
- bearing(s)
 - air-cooled, 26
 - bit, 51
 - damage, 43
 - failures, 37, 43, 59
 - inner, 43
 - journal, 13, 43
 - nonsealed, 26, 34
 - outer, 43
 - roller, 43
 - rotary speed, 43
 - sealed, 26, 34, 43
 - types of, 26
 - wear, 34, 43, 51

- bedding planes, 104
- bent housing, 61
- bent sub, 39, 61, 62
- bentonite clay, 79
- bit bearings wear, 51
- bit break-in, 39
- bit changes, planned, 33
- bit classification code, 26
- bit condition, 33
- bit cooling, 83
- bit cost, 3
- bit design and selection, 102
- bit gauge wear, 43
- bit hydraulic horsepower (bhhp), 79
- bit hydraulics, 91-100
- bit program, 9
bit records
 forms for, 46
 historical, 7
 items in, 45, 50, 95
bit selection, 4, 102
bit series, 26
bit suppliers, 9
bit types, 44
blooey line, 83, 85, 87, 88
blowout preventers (BOPs), 86, 87, 88
body material, 26
body style and profile, 30
booster compressors, 85
bradding, 42
broken inserts, 40, 41
casing, intermediate, 78
center coring, 39
centrifuges, 79
chalk, 102
chip hold-down effect, 75
circulating (pump) pressure, 79, 91
circulation loss, 78
circulation rate(s), 79, 89
circulation system, 6, 45, 75, 85
classification system
 natural diamond bits, 26
 PDC bits, 26
 TSP (thermally stable polycrystalline) bits, 26
clays
 balling, 81
 bentonite, 79
 reactive solids, 71, 82
 sloughing, 102
 in soft formations, 14
computerized drilling, 49, 95
cone dragging, 37
cone erosion, 16, 38
cone interference, 38
cone offset, 14
cone skidding, 36, 37
cone wear, 39
corrosion
 aerated mud, 90
 air drilling, 86
 of drill string, 84, 90
 insert loss, 40
 oil-base mud, 81
corrosion inhibitors, 90
cost per foot (metre) drilled, 3, 4
cracked cones, 38
cutter density, 26
cutter size/type, 26
cutter wear measurement, 34
cutters, 14
cutting structure(s), 26, 51
cutting surfaces, 19
cuttings. see also balling up; blooey line
 air drilled, 85
 air drilling, 83, 85-89
 circulation rate(s), 79
 drilling mud, 71, 82
 examination, 101
 heavy mud, 75
 high-viscosity sweep, 79
 hydraulic horsepower, 91, 93, 100
 hydrostatic pressure, 75
 invert-emulsion mud, 81
 lightweight mud, 75
 low-solids mud, 79
 viscosity, 79
 cuttings removal, 88, 89, 91, 100
daily drilling mud report, 74
daily drilling report
 forms for, 47
 items in, 50
 use of, 45
data relay, 49
day rate, 3

density, 73
derrick, 64
derrick safety, 57
desanders, 79
desilters, 79
deviated holes, 19, 51, 64, 102
deviation(s), 57
diamond bits
- dull bit evaluation, 34
- parts of, 19
- thermal stability, 20
diamond impregnated back-up stud, 23
diamond impregnated material cutting surfaces, 19
diamonds, synthetic. see TSP (thermally stable polycrystalline)
directional bottomhole assembly (bent sub), 39
doglegs, 57, 64
dolomite, 15
down-dip drift, 104
downhole motors
- articulated, 62
- and bent sub drilling assembly, 61
- drilling mud power, 60
- flexible, 62
- horizontal drilling, 60, 61
- measurement-while-drilling (MWD) systems steering, 49
- slant drilling, 60, 61
drag bits, 21
dragging, 36-37, 40
drill bits
- bit classifications, 26-32
- bit design, 11
- bit selection, 9-10
- dull bit evaluation, 33-43
- fixed-cutter bits, 11-12, 21-22, 34
- how bits drill, 12
- hybrid bits, 23

natural diamond bits, 19-20
roller cone bits, 13-19
special purpose bits, 24-25
drill collars
- considerations, 57, 64
- effect of, 57
- handling, 64
- hole deviation, 102
- torque impacts, 58
drill string
- corrosion, 84
- failure, 51, 58, 60
- pressure losses in, 95, 100
- stress on, 51, 58-59
- tension and compression, 59
drilling action, 42
drilling assembly, 61
drilling bid-contract, 2
drilling breaks, 101
drilling crew responsibility, 6
drilling fluid, 20, 22, 43, 79
drilling mud
- composition of, 71
- functions of, 71, 72
- mud characteristics affecting ROP, 73-82
- phases of, 82
- properties of, 73, 82
- uses of, 82
drilling performance records, 45-50
drilling rate
- estimating, 65
- hourly, 68
- mud solids effects on, 80
- mud weight effect on, 78
- water-base mud effects, 105
drilling rate drop, 75
drilling rate recorder, 65
drilling reports, 7
drilling situations, 1
drilling string corrosion, 90
drill-off technique, 67
drill-off test, 67, 69
dull bit evaluation
 bearing wear, 43
 IADC Dull Bit Grading System, 34-39
tooth wear, 40-43
 when to pull the bit, 33
dull bits grading, 34

electric logs, 7
explosion danger, 84, 90

filter (mud) cake buildup, 81
filtration loss, 80
fire danger, 84-85, 87, 90
fishtail bit, 21
fixed head, 11
fixed-cutter bits, 11, 18, 44
fixed-head bits, 19, 24
flare, 88
flat-crested tooth wear, 42, 43
flexible downhole motors, 62
fluid loss, 80
foam drilling, 85, 90
foaming agent, 89
footage contract, 3
formation depths (tops), 101
formation dip, 102; 103, 105
formation properties, 4, 101-104
formation testing, 101
formation types, 18, 44
formations
 and bit selection, 44
 evaluation, 83
 hard, 40, 52, 87
 impermeable, 101, 105
 overpressured, 78
 permeable, 101, 105
porous, 105
soft, 14, 15, 40, 52
full-gauge hole, 36
full-tooth hardfacing, 42
gas drilling, 85. see also air or gas drilling
gauge cutters, 23, 43
gauge protection, 26
gauge ring measurement, 36
gauge rounding, 102
gauge wear, 34
gel strength, 79, 90
geologic reports, 7
geological hazards, 101
geological prognosis, 10, 44, 101, 102
Geograph, 66
granite, 15, 102
gypsum, 14
hammer bits, 86, 87
hard formation
 air hammer drilling tool, 87
 drilling weight, 52, 54
 rotary speed, 40, 52
hard formation bits
 insert bits, 17
 steel tooth bits, 14, 44
 tungsten carbide inserts, 44
hard rocks, 15
hardfacing full-tooth, 42
hazardous materials, 82
heat checking (small cracks), 41
heavy mud drilling rate, 75
high-viscosity sweep, 79
Hill, T. H., 5
hole deviation, 19, 51, 64, 102
holes
 full-gauge, 43
horizontal, 19, 63
undergauge, 18, 36, 43
horizontal drilling
downhole motors, 60, 61
PDC bits, 22
horizontal holes, 19, 63
horizontal turn radii, 61
hourly drilling rate, 68
hybrid bits, 44
hydraulic calculations, 94-99
hydraulic horsepower
and cuttings removal, 91, 100
losses in rig mud system, 92
hydraulics, 4
hydrostatic pressure, 73, 75

IADC classification system, 27-30
IADC code, 30
IADC Dull Grading Chart, 35
impermeable formation, 101, 105
information
from bit examination, 38
bit record, 38
daily report, 45
examples of, 5
mud logs, 101
from previously drilled wells, 7, 38
while drilling, 10, 49, 101
information network, 45, 49, 95
inner bearings, 13
insert bits
breakage causes, 40
hard-formation, 17
medium-formation, 17
soft-formation, 17
specifications and formation type, 18
vs. steel tooth bits, 15
insert cutters, 41
insert loss, 40
inserts
broken, 40, 41
cone erosion and loss of, 38
diamond enhanced, 14, 86
placement of, 18
tungsten carbide, 11, 14, 16, 18, 86
integrated drilling system, 10
intermediate casing pressure, 78
invert-emulsion mud, 81
joint failure causes, 59
journal angle, 13
journal bearings, 13, 43
junk in the hole, 33, 36, 39, 40
kick likelihood with light mud, 75
learning curve, 5, 6
Lee, G., Jr., 5
Lightweight(s), 75, 79
limestone
cherty, 10
hard, 15
medium, 10
soft, 15, 102
locked cones, 37
marl, 14
measurement while drilling (MWD), 10, 49, 101
medium-formation insert bits, 17
milled-tooth bit, 15
mist drilling, 85, 90
mud. see also drilling mud
actions of, 93
aerated, 90
costs, 3, 82
heavy, 75
invert-emulsion, 81
lightweight, 75
MAKING HOLE

- low-solids, 79
- oil-base, 81
- oil-based components, 80-81
- solids and drilling rate effect, 80
- synthetic oil-base, 81
- mud characteristics affecting ROP
density, 73-78
- fluid loss, 80-82
- solids content, 79
- viscosity, 79
- mud density conversion table, 76
- mud drilling vs. air and gas drilling, 90
- mud logging company, 101
- mud logs, 7
- mud pump output, 91
- mud pumping pressure losses, 93
- mud reports, 5
- mud weight (mud density), 39, 73, 75, 77-79, 82, 84
- mud-weight adjustment, 77

- natural diamond bits
 characteristics of, 44
 classification chart, 29
 classification system, 26
 in downhole mud motor, 55
 fixed-cutter bits, 11
 fixed-head bits, 18
 rotary speed, 54
- natural diamond material cutting surfaces, 19
- nonreactive solids, 71
- nozzle combinations, 95
- off-center (whirling), 39
- off-center wear, 39
- office drilling report, 48
- offset, 14
- offset ledges, 102
- oil-base mud components, 81
- oil-emulsion mud, 80
- operator's representative, 6
- outer bearings, 43
- overburden, 102
- overburden pressure, 102
- overpressured formations, 78

PDC. see polycrystalline diamond compact (PDC)
penetration rate. see rate of penetration (ROP)
percussion hammer drilling tool, 86
permeable formation, 101, 105
pick-up and slack-off chart, 68
pilot light, 88
polycrystalline diamond compact (PDC)
thermal stability of, 22, 44
use of, 12
polycrystalline diamond compact (PDC) bits
classification chart, 28
classification system, 26
construction of, 21, 44
horizontal drilling, 22
vs. roller-cone bits, 18, 21, 24, 26-27
rotary speed, 54
porous formation, 105
pre-spud meeting items, 6
pressure losses
 across bit nozzle, 98, 99
 in drill string, 95
 through drill stem bore, 96, 97
Procedure for Selecting Rotary Drilling Equipment, 5
pump output, 100
quartzite, 15, 102
rate of penetration (ROP)
of air or gas drilling, 83
factors affecting, 4
formation rock, 102
increases in, 51, 91, 101
natural diamond bits, 65
off-center wear, 39
slowing, 33
TSPs, 65
rate of penetration (ROP) control, 65-69
reamers, 36
ream-while-drilling (RWD) bits, 24
red beds, 14
rig hydraulics, factors affecting, 94
rig manager (toolpusher) responsibility, 6
rig mud system, hydraulic horsepower losses, 92
rig power system limitations, 64
rock. see also formations
 age, 105
 character, 101
 compressive strength, 15
 strength of, 102, 105
 types of, 11
rock bits, 11
roller bearings
 classification, 26
 failure, 43
roller-cone bits
 about, 13-14
 classification chart, 27
 construction of, 11, 13
 dull bit evaluation, 34
 insert bids, 16-19
 soft-formation vs. hard formation, 44
steel-tooth bits, 14-15
weights and rpms, 52-53
rotary drive power, 58
rotary rig mud to air drilling conversion, 84, 87
rotary speed
 about, 15, 36, 40, 43, 51-69, 75, 86, 91
 bearing damage, 43
 bearing failures, 37
 broken inserts and, 40
effect on drilling rate, 54
natural diamond bits, 54
PDC bits, 54
ROP factor, 4
soft formation, 52
 vs. weight on bit (WOB), 56
rotary torque, 58
rotating hours, 33
rotating time, 3
rounding of gauge, 43, 102
sealed bearings, 34-35, 43
self-sharpening tooth wear, 42
shale
 plastic, 42
 sloughing, 83, 84, 90, 102
 TSPs in, 22
 waxy, 15
shear bits, 11
shirttail damage, 102
sidetracked hole, 24
skid marks, 43
slant drilling downhole motors, 60, 61
sloughing, 80-81, 83-84, 102
soft formation, 40, 52, 54
soft limestone, 102
soft shale, 14
soft-formation bits, 14, 15
soft-formation insert bits, 17
special considerations, 57-64
special purpose bits, 25
stator/rotator, 60
steel-tooth bits
 formations used in, 44
 hard formation bits, 14, 44
 vs. insert bits, 15
 roller cone bits, 14-15
 specifications, 15
 wear and damage, 40
steel-tooth breakage, 41
steerable directional drilling bits, 25
stuck pipe, 89
surfactants, 89
synthetic diamond bits, 11, 12
synthetic diamond crystals, 21
synthetic diamond material cutting surfaces, 19
synthetic oil-base mud, 81

tooth (cutters), 14-16, 36, 38, 40, 40, 42
thermally stable polycrystalline (TSP).
see TSP (thermally stable polycrystalline)
tooth abrasion, 42
Tooth Bit Comparison Chart, 31-32
tooth breakage, causes of, 59
tooth hardfacing, 15
tracking, 42
tricone bits, 13
trip time, 33, 57, 78
TSP (thermally stable polycrystalline) in hybrid bits, 23, 44
stability of, 22
TSP (thermally stable polycrystalline) bits
classification chart, 29
classification system, 26
stability of, 44
tungsten carbide bits, formations used in, 44
tungsten carbide inserts, 11, 16, 18
turbines, 60
turbodrill design, 60
twist-off causes, 59
two-thirds rule, 36

undergauge hole, 18, 36, 43
up-dip drift, 103
up-dip walk, 103
vertical holes, 63
wall cake, 80
water, 79
water loss, 80
water mud-weight adjustment, 77
watercourses, 20
wear
bearing, 34, 43, 51
bit bearings, 51
bit gauge, 43
cone, 39
cutter, 34
dull bit evaluation, 40-43
excessive, 41
flat-crested tooth, 42, 43
gauge, 34
inner bearings, 43
measurement, 34
off-center, 39
off-water, 39
tooth, 40-43
weight
excessive, 37, 41
imposed, 67
increase of, 77
reduction, 77
slacked off, 67
weight on bit (WOB)
diamond bits vs. roller cone bits, 56
excessive, 43
rate of penetration (ROP), 4
vs. rotary speed, 52, 56
and rotary speed, 51-56, 64
tooth breakage, 40
weighting material, 79
well planning, 5-7, 73, 82
well prognosis, 101
well program, 9
whirling, 39
To obtain additional training materials, contact:

PETEX
THE UNIVERSITY OF TEXAS AT AUSTIN
PETROLEUM EXTENSION SERVICE
J.J. Pickle Research Campus
10100 Burnet Road, Bldg. 2
Austin, TX 78758

Telephone: 512-471-5940
or 800-687-4132
FAX: 512-471-9410
or 800-687-7839
E-mail: petex@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex

To obtain information about training courses, contact:

PETEX
LEARNING AND ASSESSMENT CENTER
THE UNIVERSITY OF TEXAS
4702 N. Sam Houston Parkway West, Suite 800
Houston, TX 77086

Telephone: 281-397-2440
or 800-687-7052
FAX: 281-397-2441
E-mail: plach@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex