ROTARY DRILLING SERIES

Unit I: The Rig and Its Maintenance
Lesson 1: The Rotary Rig and Its Components
Lesson 2: The Bit
Lesson 3: Drill String and Drill Collars
Lesson 4: Rotary, Kelly, Swivel, Tongs, and Top Drive
Lesson 5: The Blocks and Drilling Line
Lesson 6: The Drawworks and the Compound
Lesson 7: Drilling Fluids, Mud Pumps, and Conditioning Equipment
Lesson 8: Diesel Engines and Electric Power
Lesson 9: The Auxiliaries
Lesson 10: Safety on the Rig

Unit II: Normal Drilling Operations
Lesson 1: Making Hole
Lesson 2: Drilling Fluid
Lesson 3: Drilling a Straight Hole
Lesson 4: Casing and Cementing
Lesson 5: Testing and Completing

Unit III: Nonroutine Operations
Lesson 1: Controlled Directional Drilling
Lesson 2: Open-Hole Fishing
Lesson 3: Blowout Prevention

Unit IV: Man Management and Rig Management

Unit V: Offshore Technology
Lesson 1: Wind, Waves, and Weather
Lesson 2: Spread Mooring Systems
Lesson 3: Buoyancy, Stability, and Trim
Lesson 4: Jacking Systems and Rig Moving Procedures
Lesson 5: Diving and Equipment
Lesson 6: Vessel Maintenance and Inspection
Lesson 7: Helicopter Safety
Lesson 8: Orientation for Offshore Crane Operations
Lesson 9: Life Offshore
Lesson 10: Marine Riser Systems and Subsea Blowout Preventers
Contents

Figures v
Tables viii
Foreword ix
Acknowledgments xi
Units of Measurement xii
Introduction 1
To Summarize 5
Marine Riser Systems 7
Riser Pipe 9
Riser Connectors 14
Termination Spools 15
Telescopic Joint 16
Auxiliary Lines 22
Handling Tools and Spiders 25
Buoyant Riser Modules 28
Lower Riser Marine Package (LMRP) 29
To Summarize 34
Diverters 39
To Summarize 42
Riser Tensioning Systems 43
To Summarize 46
Guideline Tensioners 49
To Summarize 51
Subsea Wellheads and Casing 53
To Summarize 61
Subsea BOP Stacks 63
BOP Stacks 66
Hydraulic Connectors 71
Ram Preventers 76
Annular Preventers 86
Subsea Gate Valves 92
To Summarize 94
Choke Manifolds 97
Chokes 98
Gate Valves 100
To Summarize 101
Units of Measurement

Throughout the world, two systems of measurement dominate: the English system and the metric system. Today, the United States is almost the only country that employs the English system.

The English system uses the pound as the unit of weight, the foot as the unit of length, and the gallon as the unit of capacity. In the English system, for example, 1 foot equals 12 inches, 1 yard equals 36 inches, and 1 mile equals 5,280 feet or 1,760 yards.

The metric system uses the gram as the unit of weight, the metre as the unit of length, and the litre as the unit of capacity. In the metric system, for example, 1 metre equals 10 decimetres, 100 centimetres, or 1,000 millimetres. A kilometre equals 1,000 metres. The metric system, unlike the English system, uses a base of 10; thus, it is easy to convert from one unit to another. To convert from one unit to another in the English system, you must memorize or look up the values.

In the late 1970s, the Eleventh General Conference on Weights and Measures described and adopted the Système International (SI) d’Unités. Conference participants based the SI system on the metric system and designed it as an international standard of measurement.

The Rotary Drilling Series gives both English and SI units. And because the SI system employs the British spelling of many of the terms, the book follows those spelling rules as well. The unit of length, for example, is metre, not meter. (Note, however, that the unit of weight is gram, not gramme.)

To aid U.S. readers in making and understanding the conversion to the SI system, we include the following table.
<table>
<thead>
<tr>
<th>Quantity or Property</th>
<th>English Units</th>
<th>Multiply English Units By</th>
<th>To Obtain These SI Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length, depth, or height</td>
<td>inches (in.)</td>
<td>25.4</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td></td>
<td>feet (ft)</td>
<td>2.54</td>
<td>centimetres (cm)</td>
</tr>
<tr>
<td></td>
<td>yards (yd)</td>
<td>0.3048</td>
<td>metres (m)</td>
</tr>
<tr>
<td></td>
<td>miles (mi)</td>
<td>0.9144</td>
<td>metres (m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1609.344</td>
<td>kilometres (km)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.61</td>
<td>kilograms (kg)</td>
</tr>
<tr>
<td>Hole and pipe diameters, bit size</td>
<td>inches (in.)</td>
<td>25.4</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td>Drilling rate</td>
<td>feet per hour (ft/h)</td>
<td>0.3048</td>
<td>metres per hour (m/h)</td>
</tr>
<tr>
<td>Weight on bit</td>
<td>pounds (lb)</td>
<td>0.445</td>
<td>newton (N)</td>
</tr>
<tr>
<td>Nozzle size</td>
<td>32nds of an inch</td>
<td>0.8</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td>Volume</td>
<td>barrels (bbl)</td>
<td>0.159</td>
<td>cubic metres (m³)</td>
</tr>
<tr>
<td></td>
<td>gallons per stroke (gal/stroke)</td>
<td>159</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>ounces (oz)</td>
<td>29.57</td>
<td>millilitres (mL)</td>
</tr>
<tr>
<td></td>
<td>cubic inches (in.³)</td>
<td>16.387</td>
<td>cubic centimetres (cm³)</td>
</tr>
<tr>
<td></td>
<td>cubic feet (ft³)</td>
<td>28.3169</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>quarts (qt)</td>
<td>0.9464</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>gallons (gal)</td>
<td>3.7854</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>gallons (gal)</td>
<td>0.00792</td>
<td>cubic metres (m³)</td>
</tr>
<tr>
<td></td>
<td>pounds per barrel (lb/bbl)</td>
<td>26.89</td>
<td>kilograms per cubic metre (kg/m³)</td>
</tr>
<tr>
<td></td>
<td>barrels per ton (bbl/tn)</td>
<td>0.076</td>
<td>kilograms per cubic metre (kg/m³)</td>
</tr>
<tr>
<td>Pump output</td>
<td>gallons per minute (gpm)</td>
<td>0.003279</td>
<td>cubic metres per minute (m³/min)</td>
</tr>
<tr>
<td>and flow rate</td>
<td>gallons per hour (gph)</td>
<td>0.003279</td>
<td>cubic metres per hour (m³/h)</td>
</tr>
<tr>
<td></td>
<td>barrels per stroke (bbl/stroke)</td>
<td>0.159</td>
<td>cubic metres per stroke (m³/stroke)</td>
</tr>
<tr>
<td></td>
<td>barrels per minute (bbl/min)</td>
<td>0.159</td>
<td>cubic metres per minute (m³/min)</td>
</tr>
<tr>
<td>Pressure</td>
<td>pounds per square inch (psi)</td>
<td>6.895</td>
<td>kilopascals (kPa)</td>
</tr>
<tr>
<td></td>
<td>pounds per square foot (lb/ft²)</td>
<td>0.1488</td>
<td>kilograms per metre (kg/m)</td>
</tr>
<tr>
<td>Temperature</td>
<td>degrees Fahrenheit (°F)</td>
<td>°F - 32</td>
<td>degrees Celsius (°C)</td>
</tr>
<tr>
<td>Thermal gradient</td>
<td>1°F per 60 feet</td>
<td>—</td>
<td>1°C per 33 metres</td>
</tr>
<tr>
<td>Mass (weight)</td>
<td>pounds (lb)</td>
<td>28.35</td>
<td>grams (g)</td>
</tr>
<tr>
<td></td>
<td>ounces (oz)</td>
<td>453.59</td>
<td>grams (g)</td>
</tr>
<tr>
<td></td>
<td>tons (tn)</td>
<td>0.4536</td>
<td>kilograms (kg)</td>
</tr>
<tr>
<td></td>
<td>pounds per foot (lb/ft)</td>
<td>0.9072</td>
<td>tonnes (t)</td>
</tr>
<tr>
<td>Mud weight</td>
<td>pounds per gallon (ppg)</td>
<td>119.82</td>
<td>kilograms per cubic metre (kg/m³)</td>
</tr>
<tr>
<td></td>
<td>pounds per cubic foot (lb/ft³)</td>
<td>16.0</td>
<td>kilograms per cubic metre (kg/m³)</td>
</tr>
<tr>
<td>Pressure gradient</td>
<td>pounds per square inch per foot (psi/ft)</td>
<td>22.621</td>
<td>kilopascals per metre (kPa/m)</td>
</tr>
<tr>
<td>Viscosity</td>
<td>seconds per quart (s/qt)</td>
<td>1.057</td>
<td>seconds per litre (s/L)</td>
</tr>
<tr>
<td>Yield point</td>
<td>pounds per 100 square feet (lb/100 ft²)</td>
<td>0.48</td>
<td>pascals (Pa)</td>
</tr>
<tr>
<td>Gel strength</td>
<td>pounds per 100 square feet (lb/100 ft²)</td>
<td>0.48</td>
<td>pascals (Pa)</td>
</tr>
<tr>
<td>Filter cake thickness</td>
<td>32nds of an inch</td>
<td>0.8</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td>Power</td>
<td>horsepower (hp)</td>
<td>0.7</td>
<td>kilowatts (kW)</td>
</tr>
<tr>
<td>Area</td>
<td>square inches (in.²)</td>
<td>6.45</td>
<td>square centimetres (cm²)</td>
</tr>
<tr>
<td></td>
<td>square feet (ft²)</td>
<td>0.0929</td>
<td>square metres (m²)</td>
</tr>
<tr>
<td></td>
<td>square yards (yd²)</td>
<td>0.8361</td>
<td>square metres (m²)</td>
</tr>
<tr>
<td></td>
<td>square miles (mi²)</td>
<td>2.59</td>
<td>square kilometres (km²)</td>
</tr>
<tr>
<td></td>
<td>acre (ac)</td>
<td>0.40</td>
<td>hectares (ha)</td>
</tr>
<tr>
<td>Drilling line wear</td>
<td>ton-miles (tn•mi)</td>
<td>14.317</td>
<td>megajoules (MJ)</td>
</tr>
<tr>
<td>Torque</td>
<td>foot-pounds (ft•lb)</td>
<td>1.3558</td>
<td>newton metres (N•m)</td>
</tr>
</tbody>
</table>
During normal drilling operations, the column of drilling fluid—the mud—in the well creates hydrostatic pressure to counterbalance formation pressures. As long as the rig crew maintains the mud’s hydrostatic pressure at a value greater than the formation pressure, formation fluids cannot flow into the well. In short, the mud column is the primary means of well control.

In the English, or conventional, system of measurement, where mud weight is in pounds per gallon (ppg), hole depth is in feet (ft), and pressure is in pounds per square inch (psi), the following equation can be used to calculate the hydrostatic pressure created by the mud column at the bottom of the well.

\[HP = 0.052 \times MW \times TVD \]
(Eq. 1)

where

- \(HP \) = hydrostatic pressure, psi
- \(MW \) = mud weight, ppg
- \(TVD \) = true vertical depth, ft.

The number 0.052 is a constant—that is, its value does not change as long as the other units of measure in the equation, such as ft, ppg, and psi, do not change. The constant 0.052 is derived from the pressure in psi created by a 1-ft high column of fluid that has a weight of 1 ppg.

As an example of determining hydrostatic pressure in psi, suppose a well is full of mud that weighs 12.0 ppg and that the well’s \(TVD \) is 12,500 ft. What is the hydrostatic pressure at the bottom of the well? Using equation 1—

\[HP = 0.052 \times 12.0 \times 12,500 \]
\[= 0.624 \times 12,500 \]
\[HP = 7,800 \text{ psi} \]
Marine Riser Systems

A marine riser system provides a fluid conduit to and from the wellbore—that is, it extends the wellbore from the subsea BOP to the drilling rig. It also supports auxiliary lines, such as high-pressure choke and kill lines, mud booster lines, and hydraulic conduits. Further, the marine riser system guides the drill stem and other tools from the drilling rig to the wellhead on the seabed. Finally, it provides a means of running and retrieving the BOP assembly from the surface to the wellhead on the seafloor.

Marine riser systems are critical equipment; therefore, if a system fails, catastrophic losses can result. Consequently, the overall design of the system is of paramount importance. Generally, system design begins with an assessment of expected operating conditions and an engineering analysis to establish such factors as tensile loads, bending stresses, maximum operational water depth, buoyancy requirements, surface tension, and vessel response to motion.

Additional factors that affect riser system design include—

- dynamic and axial loads while running and retrieving the riser system and BOP assembly;
- lateral forces from currents and vessel offset;
- cyclic forces from wave and vessel motion;
- vortex induced vibrations (VIVs);
- axial loads created by the weight of the riser system itself, the weight of the drilling fluid inside the riser, and the additional weight of freestanding pipe within the riser;
- axial tension from the tensioning system at the surface;
A diverter system (fig. 22) protects personnel and equipment by diverting the flow from shallow gas kicks overboard. Such gas flows can occur before a BOP stack can be installed because no casing is set in the well. A diverter does not shut in or halt well flow; rather, it diverts flow away from the rig. During normal drilling operations, the diverter directs the flow of mud returning from the marine riser into the rig’s return flow line.

![Diagram of a diverter system](image-url)

Figure 22. Diverter (Courtesy of ABB Vetco Gray)
Riser Tensioning Systems

The weight of the marine riser system must be supported while it is deployed. Otherwise, the weight of the joints at the top of the string can crush the joints below. If not supported, a conventional marine riser buckles in water depths greater than 200 to 300 ft (60 to 90 m).

A riser tensioning system (fig. 25) must support the weight of the longest riser string at the rig’s deepest operating water depth.

Figure 25. Riser tensioning system (Courtesy of Shaffer)
Guideline Tensioners

In water depths no greater than about 5,000 ft (1,500 m), guidelines may be used to guide the BOP and LMRP assembly to the wellhead on the seabed. Four wire-rope guidelines form the corners of a square that extend from the vessel to guideposts on a guide base at the seabed. Each wire rope is attached to a guideline tensioner through double sheaves on the piston rod and cylinder's blind end. The guideposts on the guide base are 6 ft (2 m) from the center of the wellbore, and form a square whose sides are about 8½ ft (2.5 m) long. Guidelines are inserted into funnels at each corner of the BOP and LMRP frames.

When the BOP and LMRP are run, the guidelines are tensioned sufficiently to (1) prevent rotation of the BOP and LMRP assembly, (2) overcome the lateral loads imposed on the guidelines by vessel movement and current forces, and (3) provide alignment with the guideposts on the guide base.

Once the BOP assembly has been lowered over the guideposts and landed on the wellhead, the guideline tension can be reduced to a point sufficient just to support the weight of the wire rope.

If the LMRP has to be disconnected from the BOP, the guideline tensioners are used to guide the LMRP back over the BOP guideposts.

The guideline tensioners may also be used to guide other equipment to and from the seabed. For example, they may guide TV cameras to monitor riser angle or to see whether hydrates are forming. Guideline tensioners may also be used to guide control pods to and from the LMRP. Experience has shown that even the heaviest loads can be guided with guideline tension at the surface set at 6,000 to 12,000 lb (2,670 to 5,340 dN).
Subsea Wellheads and Casing

The subsea wellhead and casing are a system—a system that forms the foundation for drilling a successful well. This system also links the well to the BOP equipment. A structural casing string is set and cemented in place to support the BOP assembly at the seabed. This structural casing also supports subsequent casing strings that are run in the well.

As the well is drilled, crew members run casing that is smaller in diameter and has higher pressure ratings than previous casing strings. Table 2 gives a typical casing program.

Table 2
Casing Strings Run into a Well From Start to Finish with Typical Hole and Casing Sizes

<table>
<thead>
<tr>
<th>Casing String</th>
<th>Hole Size, in. (mm)</th>
<th>Casing Size, in. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural</td>
<td>36 (914.4)</td>
<td>30 (762.0)</td>
</tr>
<tr>
<td>Conductor</td>
<td>26 (660.4)</td>
<td>20 (508.0)</td>
</tr>
<tr>
<td>Surface</td>
<td>13½ (339.7)</td>
<td>17½ (444.5)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>12¼ (311.2)</td>
<td>9½ (244.5)</td>
</tr>
<tr>
<td>Production</td>
<td>8½ (215.9)</td>
<td>7 (177.8)</td>
</tr>
</tbody>
</table>
Mud- and Gas-Handling Equipment

A mud-gas separator is an essential item of rig equipment to handle the mud and gas flow from the choke manifold during a gas kick. It provides a method of separating the gas from the mud and venting the gas at a safe distance from the drill floor. Once separated from the gas, the mud can be returned to the active system. Various types of separator are available, but a bottom opening to enable fluid return to the mud system and an opening to allow gas to vent from the top are essential. The gas vent line’s ID should be 6 to 8 in. (150 to 200 mm) to minimize back-pressure on the separator. The vent line is normally routed up the derrick where the gas can vent safely above the crown. Usually, a bypass to an emergency overboard line is provided should the separator become overloaded or fail. Prior to returning to the active system, the mud passes through vacuum degassers to separate any small gas accumulations that were left in the mud after it passed through the mud-gas separator. Finally, the active mud tanks have large surface areas and an agitation system. The large surface areas expose the mud to the atmosphere and the agitators stir the mud. In this manner, even smaller quantities of gas that may still be left in the mud can be removed.

Since correctly weighted mud is the primary means of well control, bulk mud mixing devices, including storage tanks with a transfers system and mixing hoppers, are required to quickly raise the mud weight.

Adequate volumes of conditioned mud should be maintained in the tanks at all times, taking into consideration the possibility of lost circulation. Further, tank space should be available to allow for expansion if it becomes necessary to circulate out a gas kick.
Auxiliary Surface Well-Control Equipment

Auxiliary surface well-control equipment includes equipment for the drill string and various surface devices. Equipment needed for the drill string include drill pipe safety valves, upper and lower kelly cocks, inside BOP valves, and drill pipe float valves. Additional surface equipment includes a trip tank, mud pit volume measuring and recording devices, a flow-line mounted flow-line sensor, and safety valves for the top drive.

A full-opening drill pipe safety valve with the same pressure rating as the ram preventers should be available on the rig floor at all times, complete with its closing wrench. The required crossover subs should also be available to allow the valve to be connected to any section of the drill string, casing, or tubing in use. The drill pipe safety valve’s OD should be of a size that allows it to be run in the hole. Furthermore, it should have a top connection that allows it to be connected to the top drive or kelly.

An inside blowout preventer is a drop-in check valve that the floor crew installs on the surface. It is also called a Gray valve after one of the manufacturers of such valves. It should be available on the drill floor at all times. If the drop-in type is used, a landing sub is positioned in the drill string at the drill collars. A dart of the correct size to match the landing sub is kept on the rig floor at all times. Note that the dart must pass through all components of the drill string above the landing sub.
Hydraulic Control Systems

Every component in the subsea BOP assembly is hydraulically operated and a control system is used to operate them. The BOP control system must deliver, on command, hydraulic fluid at the correct pressure to operate the BOP components. Further, when a component is operated, the system must also vent hydraulic fluid from the opposite side of the operated component. Subsea BOP control systems are indirect pilot-operated systems. That is, hydraulic pilot signals from the surface operate various valves and regulators mounted in the subsea control pods that then supply the operating fluid to the BOP components. Two types of indirect pilot system are the straight hydraulic type and the multiplexed type. The straight hydraulic system (fig. 61) is rated to 3,000 psi (21,000 kPa) working pressure and delivers the hydraulic pilot signals from the surface through pilot hoses to the valves and regulators mounted in the subsea control pods.

The multiplexed system is usually rated to 5,000 psi (35,000 kPa) working pressure and sends electronic signals from the surface to subsea-mounted solenoid valves that then send the pilot signals to the valves and regulators.

BOP control system manufacturers include Koomey, Shaffer, Hydril, ABB Systems, and Cameron. Basically, all straight hydraulic systems operate the same way, although different manufacturers may use slightly different valves and regulators to achieve the same result.

The control system can be separated into four individual sections—

1. the surface accumulator unit, or HPU;
2. the hose bundles, hose reels, and hose reel control panels;
3. the subsea control pods; and
4. the remote electric panels.
To obtain additional training materials, contact:

PETEX
THE UNIVERSITY OF TEXAS AT AUSTIN
PETROLEUM EXTENSION SERVICE
10100 Burnet Road, Bldg. 2
Austin, TX 78758
Telephone: 512-471-5940
or 800-687-4132
FAX: 512-471-9410
or 800-687-7839
E-mail: petex@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex

To obtain information about training courses, contact:

PETEX
LEARNING AND ASSESSMENT CENTER
THE UNIVERSITY OF TEXAS
4702 N. Sam Houston Parkway West, Suite 800
Houston, TX 77086
Telephone: 281-397-2440
or 800-687-7052
FAX: 281-397-2441
E-mail: plach@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex