Plant Processing of Natural Gas
Table of Contents

Figures vi

Tables viii

Foreword ix

Acknowledgments xi

About the Authors xiii

Chapter 1. Fundamentals

- Fluid Properties 1
 - Temperature 2
 - Pressure 3
 - Gravity and Miscibility 3
 - Solubility 4
- The Ideal Gas Law 4
 - Liquid Phase 5
 - Vapor Pressure 5
 - Boiling Point and Freezing Point 6
- Hydrates 7
- Comparing Physical Properties 8
 - Composition 10
 - Heat Energy 10
 - Heating Value 12
 - Combustion 12
 - Flammability 13
- Applications 13
 - Flow Diagrams 14
 - References 21

Chapter 2. Feed Gas Receiving and Condensate Stabilization

- Treating and Processing 23
- Design Basis and Specifications for Treatment Units 26
 - Feed Gas Basis 26
 - Product Specifications 27
- Equipment Selection and Design 28
 - Pig Receivers 28
 - Slug Catchers 30
 - Condensate Stabilizers 32
 - Condensate Stabilizer Reboilers 32
 - Stabilizer Overhead Compressors 32
 - Gas and Liquid Heaters 32
 - References 33

Chapter 3. Dew-Point Control and Refrigeration Systems

- Process Descriptions 35
 - The Refrigeration System 41
 - Economizers 42
 - Chillers 44
 - Possible Problems 44
 - Multiple-Stage Refrigeration 46
 - Units Specifications 40
 - Comparison of Dew-Point Processes 40
 - Comparison of Dew-Point Processes 40
 - The Refrigeration System 41
 - Economizers 42
 - Chillers 44
 - Possible Problems 44
 - Multiple-Stage Refrigeration 46
 - References 50
CHAPTER 8. NGL Recovery—Cryogenic
Typical Applications 115
 Turboexpander Process 115
 Propane-Recovery Process 120
 Ethane-Recovery Process 121
 Turboexpanders 122
 Cryogenics 127
 References 130

CHAPTER 9. Fractionation and Liquid Treating
Fractionation 131
 Packed Columns 134
 NGL Fractionation Plants 134
 Deethanizer (DeC₂) Column 136
 Depropanizer (DeC₃) Column 137
 Debutanizer (DeC₄) Column 137
 Deisobutanizer (DIB) or Butane Splitter Column 137
 Product Specifications 138
 Monitoring Fractionation Plant Operation 139
 Possible Operating Problems 140
 NGL Product Treating 141
 Liquid—Liquid Treating 141
 Liquid—Solid Treating 143
 References 145

CHAPTER 10. Nitrogen Rejection Unit (NRU)
Nitrogen Rejection 145
 NRU Process Selection 145
 Pressure Swing Adsorption (PSA) 145
 Cryogenic Absorption 145
 Membranes 146
 Cryogenic Distillation 146
 Cryogenic NRU Processes 146
 Pretreatment 147
 Chilling 148
 Cryogenic Distillation 148
 Recompression 148
 NRU Processes 149
 References 152

APPENDIX. Figure and Table Credits 153
GLOSSARY 159
INDEX 183
Dr. Doug Elliot has more than 40 years experience in the oil and gas business, devoted to the design, technology development, and direction of industrial research. Doug is currently President, COO and cofounder (with Bechtel Corporation) of IPSI LLC, a company formed in 1986 to develop technology and provide conceptual design services to oil and gas producing and engineering, procurement, and construction companies.

Prior to IPSI, Doug was Vice President of Oil and Gas with Davy McKee International. Doug started his career with McDermott Hudson Engineering in the early 1970s following a postdoctoral research assignment under Professor Riki Kobayashi at Rice University, where he developed an interest in oil and gas thermophysical properties research and its application.

Doug has authored or coauthored over 65 technical publications plus 12 patents. He served as a member of the Gas Processors Association Research Steering Committee from 1972 to 2001 and as Chairman of the GPSA (Gas Processors Suppliers Association) Data Book Committee on Physical Properties. Doug served as Chairman of the South Texas Section and Director of the Fuels and Petrochemical Division of the American Institute of Chemical Engineers; and is currently a member of the PETEX Advisory Board. He holds a B.S. degree from Oregon State University and M.S. and Ph.D. degrees from the University of Houston, all in chemical engineering.

Doug is a Bechtel Fellow and a Fellow of the American Institute of Chemical Engineers.
J.C. Kuo (Chen Chuan J. Kuo) is a 34-year veteran of the gas processing, gas treating, and liquefied natural gas (LNG) industry. As a senior advisor for Chevron’s Energy Technology Company, he has served as the Process Manager/Process Lead for many projects, including the Wheatstone LNG, Gorgon LNG, Delta Caribe LNG, Casotte Landing, and Sabine Pass LNG terminal projects. He has also served as the technical process reviewer for Angola, Olokola, Algeria, and Stockman LNG projects. Before working at Chevron, J.C. was the Technology Manager for IPSI, an affiliate of Bechtel, and served as the Process Manager/Process Lead for the Pemex Catarelli offshore project, the Egyptian LNG (Idku) trains 1 and 2, China Shell Nan Hai, Chevron Venice gas plant de-bottleneck, Tunisia NRU, and Australian SANTOS projects.

J.C. is a frequent speaker and presenter at international conferences such as for the American Institute of Chemical Engineers, gas processing and treating conferences, and the LNG Summit. He has contributed to gas processing and LNG technology improvements through a patent, a book, and many papers. He has also served as co-chair of the AIChE LNG sessions for the topical conferences on natural gas utilization. He is a member of the steering committee for the North American LNG Summit.

His degrees include a B.S. from Chung Yuan Christian University, Taiwan, and an M.S. from the University of Houston, both in Chemical Engineering; and an M.S. in Environmental Engineering from Southern Illinois University. He is a registered Professional Engineer in Texas and a member of AIChE. He is the president of the 99 Power Qi Qong Texas divisions.
Dr. Pervaiz Nasir has more than 27 years experience in the oil and gas business. He is currently the Regional Manager Gas/Liquid Treating and Sulfur Processes, Americas, at Shell Global Solutions.

Pervaiz started his career at Shell Development Company in 1981 in research and development and technical support, mostly related to oil and gas processing. In 1986, he moved into licensing and process design of Shell Gas/Liquid Treating technologies. As a member of Shell Midstream from 1991 through 1999, Pervaiz was responsible for the operations support and optimization of existing gas plants and the development and startup of new gas processing facilities.

He then joined Enterprise Products Company as Director of Technology. At Enterprise, Pervaiz was responsible for the evaluation of new business ventures/technologies in gas processing, liquefied natural gas (LNG), petrochemicals, etc. He returned to Shell Global Solutions in 2006.

Pervaiz holds a B.S. from Middle East Technical University (Ankara), an M.S. from University of Alberta (Edmonton), and a Ph.D. from Rice University (Houston), all in chemical engineering. He served on the Gas Processors Association (GPA) Phase Equilibria Research Steering Committee from 1983 through 1990 and is currently a member of the GPA LNG Committee. Pervaiz has authored or coauthored over 17 external technical publications.
Natural gas is colorless, shapeless, and odorless in its pure form. It is a fossil fuel consisting primarily of methane with quantities of ethane, propane, butane, pentane, carbon dioxide, nitrogen, helium, and hydrogen sulfide. Natural gas is combustible, gives off a great deal of energy, is clean burning, and emits low levels of byproducts into the air. It is an important source of consumer energy used in homes to generate electricity.

The petroleum industry classifies natural gas by its relationship to crude oil in the underground reservoir. Associated gas is the term used for natural gas that is in contact with crude oil in the reservoir. The associated gas might be a gas cap over the crude oil in a reservoir or a solution of gas and oil. Nonassociated gas is found in a gas phase in reservoirs without crude oil.

Whether associated or nonassociated, gas production streams are highly variable and can contain a wide range of hydrocarbon and nonhydrocarbon components. These streams might include various mixtures of liquids and gases as well as solid materials. There are usually some nonhydrocarbon components including nitrogen, helium, carbon dioxide, hydrogen sulfide, and water vapor present in the stream. Trace amounts of other components, such as mercury, might also be present.

Natural gas processing plants use physical and chemical processes to separate and recover valuable hydrocarbon fluids from a gas stream. In the processing plant, all the pipes, containment vessels, steam lines, tanks, pumps, compressors, towers, and instruments contain a gas or liquid undergoing some kind of treatment process.

During the processing, the nonhydrocarbon contaminants must be handled properly because they affect gas behavior during treatment, impair the efficiency of processing operations, or can damage the processing equipment. For example, the contaminant, liquid mercury, weakens and bonds with the aluminum heat exchangers used to produce supercooled fluids. If mercury is not removed from the gas early in the processing phase, it liquefies and collects on the exchanger’s surfaces, eventually destroying the heat exchangers.

FLUID PROPERTIES

When there is a pipe, a steam line, a tank, a pump, a compressor, a tower, an instrument, or even a filled sample container in a gas plant, it almost always contains a fluid.

What is a fluid? A fluid can be a gas, a liquid, or a solid. A fluid is defined as any substance that flows freely unless restricted or contained by a barrier. Without the ability to assume a shape of its own, a fluid assumes the shape of the container into which it is placed. Both gases and liquids are classified as fluids.

Natural gas treatment is based on the reactions of reservoir fluids in physical and chemical processes. Each fluid has a unique set of properties including gravity, solubility, and flammability controlling its response to given stimuli. A gas processing plant operator must determine the specific properties and conditions of its source of oilfield fluids, or feedstock, because each one is different. Problems that occur during gas processing come from a fundamental misunderstanding of the specific fluid properties or the physical and chemical laws that determine fluid behavior.
TREATING AND PROCESSING

Plant unit configurations vary depending on the type of components of the feed gas and the final products desired for consumer use (fig. 2.1).

Feed gas from various gas fields enters the gas plant through pipelines and goes through several units of treating and processing, as shown in figure 2.2. The main units perform the following functions:

- Remove oil and condensates
- Remove water
- Separate the natural gas liquids from the natural gas
- Remove sulfur and carbon dioxide
- Remove impurities such as mercury, oxygen, and BETX (benzene, ethylbenzene, toluene, and xylenes)

The first treating unit is the feed gas-receiving system and the condensate stabilization system. Condensate is a light hydrocarbon liquid obtained by condensation of hydrocarbon vapors. It consists of varying proportions of propane, butanes, pentanes, and heavier components with little or no methane or ethane. The feed gas receiving system separates the feed gas into gases, aqueous liquid, and hydrocarbon liquid for further processing at plant units downstream (fig. 2.3).

The condensate stabilization system removes the light components such as methane, ethane, and propane, dissolved in the hydrocarbon liquid from the feed gas reception system (fig. 2.4). Hydrocarbon liquid normally contains a large amount of dissolved light components because of high pipeline pressures. These light components need to be removed to meet condensate product and other downstream processing requirements.
PROCESS DESCRIPTIONS

Raw gas comes from production fields through the pipelines to the feed gas receiving unit and condensate stabilization unit. The raw gas then flows to the gas-treating unit and then to a dew-point control and refrigeration unit or a natural gas liquid (NGL) recovery unit. An export compression system is sometimes used after the dew-point control unit to pressurize the gas to the requirements of the pipeline grid. Finally, the gas is sent to the consumers through a pipeline grid.

A dew-point control unit helps to prevent liquid condensation in the pipeline grid under various pressures and temperature conditions. There are two kinds of dew-point control required: a water dew-point control and a hydrocarbon dew-point control. In water dew-point control, there are several dehydration, or water removal, methods available, including the silica gel, glycol, and molecular sieve. Hydrocarbon dew-point control also has various methods available including refrigerated low-temperature separation (LTS), expander, Joule-Thomson (J-T), and silica gel. Companies might use glycol gas dehydration for water dew-point control and a refrigeration cooling system for hydrocarbon dew-point control. More explanation of gas dehydration is given in Chapter 6.

The purpose of a refrigeration system is to remove heat from the feed stream in a heat exchanger. Heat exchangers are referred to as evaporators or chillers and provide the required cooling level for various gas processing applications. Refrigeration systems use refrigerant, called working fluid. Working fluid is selected based upon temperature requirements, availability, economics, and previous experience. The availability of ethane and propane on hand at natural gas processing plants makes these gases the prime choice as working fluids. In gas plants, propane is normally the preferred refrigerant.

COST ESTIMATE

Dew-point depression is defined as the difference in degrees between the feed gas temperature and the dew-point of a fluid. The dew-point depression difference in degrees determines the best process to use for dew-point control.

Depending on the amount of dew-point depression required, an economic evaluation is done to compare installation costs and operating costs for the various processes. Using an average 80°F (45°C) dew-point depression requirement, there are several processes available for the dew-point control. Three of the most widely used process options are the silica gel process, the glycol/propane refrigeration process, and the glycol/J-T valve cooling process.
GAS-TREATING PROCESSES

Hydrocarbon streams, both gaseous and liquid, might contain contaminants such as \(\text{H}_2\text{S} \) and \(\text{CO}_2 \) that must be removed before further processing and marketing. Removal of \(\text{H}_2\text{S} \), \(\text{CO}_2 \), and other sulfur compounds, commonly called "acid gases," is normally referred to as hydrocarbon treating or "sweetening".

Treated gas regulations and specifications are stringent regarding residual \(\text{H}_2\text{S} \) and other sulfur species. Typical U.S. sales gas contracts restrict the following:

\[
\begin{align*}
\text{H}_2\text{S} & \leq 0.25 \text{ grains/100 scf (about 4 ppmv)} \\
\text{Total sulfur compounds} & \leq 5 \text{ grains/100 scf (about 80 ppmw)} \\
\text{CO}_2 & \leq 2 \% \text{ mole}
\end{align*}
\]

Acid gas components can be removed from a sour gas stream by:

- chemical reaction using liquids or solids;
- physical absorption in liquids;
- adsorption on solids;
- diffusion through membranes.

The acid gas removal processes can be nonregenerative or regenerative. The nonregenerative processes are suitable only when trace amounts of contaminants must be removed and/or very high purity of treated gas is desired. Nonregenerative processes become too costly when the \(\text{H}_2\text{S} \) to be removed exceeds about 1 ton per day. Examples of nonregenerative treating processes are SulfaTreat® and Chemsweet®, both marketed by C.E. Natco.

Regenerative processes are more economical for removing larger quantities of contaminants. An example of a regenerative process is the use of an aqueous amine solution to remove the \(\text{H}_2\text{S} \) and \(\text{CO}_2 \) from a sour gas stream. The amine solution is then regenerated by reducing its pressure and heating it to about 250°F. The solution is then cooled and recycled for reuse. Regenerative treating processes can be broadly classified as those that depend on:

- chemical reaction in
 - amine-based solvents,
 - nonamine-based solvents;
- physical absorption;
- mixed chemical/physical absorption;
- adsorption on a solid.

CHEMICAL REACTION

In these processes, \(\text{H}_2\text{S} \) and/or \(\text{CO}_2 \) are chemically bound to the active ingredient in the treating solution. Therefore, the residue gas can be treated to retain only very low levels of these contaminants. The chemical solvent processes in current commercial processes use weak bases like alkanolamines, alkali salt solutions, potassium carbonate, or a chelate solution.
5
Sulfur Recovery and Claus Off-Gas Treating

SULFUR RECOVERY

Gas treating plants must strictly comply with legal, government, and safety standards and regulations concerning emissions and pollution. During the treatment process, H₂S and some or most of the CO₂ are removed from the sour gas stream, as discussed in Chapter 4. These removed sour gas components must be dealt with cautiously.

While the emissions requirements vary with geography, most countries do not permit the emission of more than a few pounds of sulfur (H₂S, SO₂, etc.) per day into the atmosphere. To control emissions, the acid gas stream from a treating plant is fed to a sulfur recovery unit (SRU) where H₂S and other sulfur compounds are converted and recovered as nontoxic elemental sulfur (S). The tail gas from the SRU still contains some sulfur components. These are converted to SO₂ in an incinerator before being discharged into the atmosphere. If high (99.8+%) sulfur recovery is desired, the SRU tail gas is fed to a tail-gas treating plant for further reduction of sulfur emissions.

Thermal Process

In 1883, an English scientist, Carl Friedrich Claus, discovered and patented a process in which H₂S was reduced to elemental sulfur and water in the presence of a catalyst.

Claus’s formula for this process is:

\[H_2S + \frac{1}{2}O_2 = S + H_2O \]

The control of this exothermic, or heat-releasing, process was difficult, and conversion to elemental S was low. The modified Claus process used today overcomes the control and conversion problems by dividing the Claus process into the following two steps:

Thermal Step

In this exothermic step, the air-to-acid gas ratio is controlled so that about N of the H₂S is oxidized to SO₂. For gases containing hydrocarbons and/or ammonia from a sour water stripper, enough air is injected to ensure complete combustion of ammonia and hydrocarbon components. The process temperature during this step is from 1,800°F–2,500°F.

Catalytic Step

In this moderately exothermic catalytic reaction, the sulfur dioxide (SO₂) formed in the thermal section reacts with unburned H₂S to form gaseous elemental sulfur. The catalyst used in this step is made from activated alumina or titanium dioxide.

Other than the reactions of hydrocarbons and other combustibles, the key reactions taking place are:

Thermal Reaction:

\[H_2S + \frac{1}{2}O_2 = SO_2 + H_2O \]

Thermal and Catalytic Reaction:

\[2H_2S + SO_2 = 3S + 2H_2O \]
DEHYDRATION

All hydrocarbon fluids can retain some water. Water is soluble in liquid hydrocarbons and can be held in the vapor phase by hydrocarbon gases. When a liquid or gas is cooled, its capacity for containing water decreases. As a result, it can produce liquid and/or solid water called hydrates. Hydrates are a separate and problematic part of gas processing.

Figure 6.1 shows how the water content of natural gas varies with temperature and pressure. For example, at 1,000 psia and 100°F, water-saturated natural gas contains about 62 pounds of water per million standard cubic feet (MMscf) of gas. At 1,000 psia and 0°F, the gas contains only about 2 pounds of water per MMscf of gas.

The water dew point of a gas or liquid is the temperature at which free water will begin to separate from the gas or liquid. If a natural gas stream at 1,000 psia contains 62 pounds of water per MMscf of gas, its water dew point is 100°F. If it is cooled below 100°F, free water will be present.

Hydrates will form if a gas or liquid containing free water is cooled below its hydrate temperature. The graph shown in figure 6.2 can be used to estimate the hydrate temperature of natural gas. For instance, a 0.6 specific gravity gas has a hydrate temperature of about 61°F at 1,000 psia. If this gas must be cooled below its hydrate temperature, either due to pipeline transportation, pressure reduction for consumption, or for processing, precautions must be taken to prevent free-water dropout that causes freezing and formation of hydrates.

Hydrates are solid compounds that form as crystals and resemble snow. They are created by a reaction of natural gas with water, and when formed, are about 10% hydrocarbon and 90% water. Hydrates have a specific gravity of about 0.98 and will float in water and sink in hydrocarbon liquids. Freezing can be avoided by either removing the water from the gas or liquid prior to cooling below the hydrate temperature, or by using a hydrate inhibitor to mix with the water condensed during cooling.

Dehydration is the process of removing water from a substance. Dehydration can be accomplished by using solid substances such as those used in dry-bed dehydrators. It can also be done using a liquid, such as triethylene glycol. A stripping gas in a TEG reboiler can also be used. The more common hydrate inhibitors are methanol and ethylene glycol. Most natural gas facilities use one or more of the following dehydration processes: ethylene glycol injection, TEG dehydration, or dry-bed dehydrators.
Straight from the well, natural gas is a mix of hydrocarbons, including methane, ethane, propane, and butane. It also contains many nonhydrocarbons, such as nitrogen, helium, carbon dioxide, hydrogen sulfide, and water. Raw gas is processed to separate these components. These processes continue to improve with advanced technology.

Previously, when kerosene was a highly valued product and natural gas was simply an unwanted byproduct, most natural gas was wasted. Gas was commonly flared off—a process that often continued day and night. Little was done to capture any gas products. A few operators put traps in their lines to catch drip gas. A form of gasoline, drip gas naturally condenses as it comes from the natural gas wells and cools in field-gathering lines.

Gasoline began to surpass kerosene sales around 1912. The first gas processors learned to increase the yield of drip gas by compressing the gas and allowing it to cool. With the demand for fuel gasoline growing quickly, producers began trying to get more usable products from the oil and gas. An increased-yield process, called lean oil absorption, was developed in the 1920s. Lean oil is a hydrocarbon liquid, usually lighter than kerosene. In contact with natural gas, lean oil absorbs some of the heavier hydrocarbons from the gas, which can be separated from the oil later. Using this process, operators recovered more gas condensate as well as butane, a gas that liquefies easily under pressure. This was the beginning of the NGL market.

In the 1950s, processors improved the yield from lean-oil absorption by adding refrigeration to the process. Advancing technology has added the development of better refrigeration equipment, lower processing temperatures, and new ways to market natural gas.

Lean-oil absorption is only one of many ways to separate the various products in natural gas. Instead of using lean-oil absorption, plants might use a less expensive process by refrigerating the gas to remove the propane and heavier hydrocarbons. Many of the newest gas processing plants only produce a single NGL product called Y-grade, which is then shipped to another plant for further separation.

Chapter 7 presents the newer, but still commonly used, lean-oil absorption process. Chapter 8 covers the newer processes of refrigeration and turboexpansion. However, the complete range of process possibilities cannot be fully explored in these chapters because gas plants often use combinations and modified versions of these processes, depending on the range of products produced.
The heavier hydrocarbons, generally referred to as NGLs, might need to be removed to control the hydrocarbon dew point and/or the gas heating value. However, heavier hydrocarbons can also be a source of income for the gas producer. The history of the evolution of liquids recovery facilities from simple oil absorption to cryogenic expander processes is complex (Elliot, 1996).

Lean-oil absorption processes, such as the ambient and refrigerated processes, were commonly used until the early 1970s, as shown in figure 8.1.

The refrigerated oil absorption process was introduced in 1957 by modifying the ambient oil absorption process to operate at lower temperatures. This allowed the use of lower molecular weight oils which recover more NGLs than the higher molecular weight oils, used in the ambient process. At a temperature of 40°F, the refrigerated oil absorption process could be used to recover up to 40+% ethane and 90+% propane in the feed gas.

A major shift in the gas processing industry began when the first low-temperature expander plant was built and brought into operation in 1964. The basic design of this plant remains today. During the 1970s, the expander plant became the dominant process scheme used to recover NGLs from feed gas. It is an efficient process for high ethane and propane recovery.
FRACTIONATION

The basis for most hydrocarbon phase separations is the equilibrium flash process. A flash process gives a “sloppy” or imprecise separation of the components in a mixture. The liquid and vapor phases of the flash process still contain all the components that were present in the feed gas. To better separate the feed components, a process called fractionation, or distillation, was developed. Fractionation is possible when the components to be separated have different boiling points. The higher the difference in the boiling points, the easier it is to separate the components.

During fractionation, a mixture is separated into individual components or groups of components. Fractionation is a countercurrent operation in which vapor mixtures are repeatedly brought in contact with liquid mixtures having similar composition as the vapors. The liquids are at their bubble points and the vapors are at their dew points. Bubble point is the temperature at which the first bubble of gas forms in liquid. Part of the vapor condenses, and part of the liquid vaporizes during each contact. The vapor becomes richer in the lighter or lower boiling components, and the liquid becomes richer in the heavier or higher boiling components.

A fractionating column can be viewed as a combination of absorption and stripping columns. Figure 9.1 is a schematic diagram of a fractionation column with the associated and peripheral equipment.

The cooling in a condenser is done either by air, cooling water, or a refrigerant such as propane. The column pressure normally determines the cooling medium that is used. Reboiler heat is provided by steam, hot oil, hot medium fluids, hot compressor discharge gas, or a hot process stream.

The number of trays or the height of the packed section in a fractionation column depends upon the number of vapor/liquid contacts required to make the desired separation. Fractionation columns use valve trays with downcomers or pipes that move the liquid from one tray to the one below. The valves open either partially or fully by vapor flowing through the tray. A weir maintains liquid level on the tray. Liquid flows across the tray, over the weir, and through a downcomer or down pipe to the tray below. Large-diameter columns might have two or four liquid flow-passes on each tray. Figure 9.2 shows flow through vapor passages on a tray in a fractionation column.
NITROGEN REJECTION

Nitrogen (N₂) is an inert gas found in varying amounts in natural gas reservoirs. Nitrogen rejection is a necessary process in maintaining a desired Btu value for sales gas and pipeline specifications. Nitrogen is added to or removed from the sales gas to adjust its heating or Btu value. Adding nitrogen lowers the Btu value, while removing nitrogen raises the Btu value. However, there is a limit to the maximum amount of N₂ or inert gases allowed. Nitrogen has an additional use in the enhanced oil recovery (EOR) processes and for increasing oil production through reservoir injection.

Nitrogen is removed from the feed gas at low temperatures in a nitrogen rejection unit (NRU) designed according to:

- Inlet gas composition
- Inlet gas pressure
- Product specifications
- Vent nitrogen
- Residue gas heating value
- Hydrocarbon recovery required

NRUs operate best under stable compositions, inlet rates, temperatures, and pressures, and must be designed to efficiently operate over a broad range of nitrogen gas compositions (5%–80%). The quantity of nitrogen in the feed gas is generally the main factor in selecting a nitrogen removal process.

NRU PROCESS SELECTION

There are four categories of processes currently available for removal of nitrogen from natural gas.

Pressure Swing Adsorption (PSA)

Pressure swing adsorption is a technology used to separate nitrogen under pressure according to its molecular characteristics and attraction to an adsorbent material at near-ambient temperatures. Special adsorptive materials are used as a molecular sieve adsorbing the hydrocarbon components at high pressure. The process then swings to low pressure to desorb the adsorbent material. Methane is produced during the desorption step at relatively low pressure near ambient or under vacuum in some cases. It often requires pretreatment and has high capital and compression costs. The recovery of methane is generally moderate.

Cryogenic Absorption

The cryogenic absorption process uses chilled hydrocarbon oil to absorb the bulk of the methane and achieve a separation of nitrogen from natural gas. The absorbed methane is stripped off the oil in a regenerator and subsequently compressed back to the pipeline pressure. The need to absorb the bulk of methane requires a large oil circulation flow and equipment size. Therefore, it is most suitable for high nitrogen content streams. It has not been widely used commercially.
absolute pressure, 3
absolute zero, 2
absorbers, 98
absorber workings, 99–100.
absorption, 36, 51
absorption oil, 99
activated carbon process, 62
adiabatic expansion (JT), 148
adsorbent life, 89
adsorption on a solid, 61–62
air-to-fuel ratio, 13
alkali salt solutions, 51
alkanolamines, 51, 141
amalgamation, 92
amalgam corrosion, 92
ambient temperature, 58
American Petroleum Institute (API), 28
American Society for Testing and Materials (ASTM International), 109
American Society of Mechanical Engineers (ASME), 28
antiagglomerants (AAs), 76
API gravity, 3
applications, gas processing general, 13–21
applications, NGL recovery-cryogenic
 ethane-recovery process, 121–122
 propane-recovery process, 120
 turboexpander process, 115–119
aromatics, 26
associated gas, 1

biological oxidation process, 57
boiling point, 6
bottoms temperature, 106
British thermal units (BTUs), 10
bubble cap, 18
bubble-point line, 116
bubble-points, 131
butane splitter column, 137

carbon disulfide (CS₂), 53
case study, 95
catalytic recovery, 68, 70
catalytic step, 67
cautic treating, 141
centrifugal compressors, 32
chelate solution, 51, 57
chemical reactions
 amine-based solvents, 52–53
 biochemical processes, 57–58
diethanolamine (DEA), 53
diglycolamine (DGA), 53
formulated amines, 54
hot potassium carbonate process, 57
methyl diethanolamine (MDEA), 54
monoethanolamine (MEA), 53
nonamine-based processes, 57–58
redox process, 57

dehydrations
 debutanizer, 28
 debutanizer (DeC₄) column, 137
diethanizer, 120
diethanizer (DeC₂) column, 137
degradation products, 53
dehydration, 4, 73–80
dehydration and mercury removal, 73–95
dehydration methods
 design basis and specifications, 92–93
design issues, 88
 liquid desiccants, 80, 82–84
 mercury removal unit (MRU), 90
 molecular sieve process, 85–86
 silica gels and activated ammonia, 85
 solid desiccants, 84–85
desosbutanizer (DIB) column, 137
demethanizing, 104
depentanizer, 28
depropanizer (DeC₃) column, 137
desiccants, 147
design basis and specifications for dehydriation and mercury removal
 about generally, 92
case study, 95
design considerations, 94–95
equipment selection and designs, 95
gas dehydration units, 92
general considerations, 92
technology selection, 92
design basis and specifications for treatment units
 condensate product storage tanks, 28
 feed case basis, 26
 feed gas, 26–28
 product specifications, 27
design cases, 26
design considerations
 design basis and specifications for dehydriation and mercury removal, 94–95
 free-liquid removal, 94
 mercury removal costs, 94
 MRU location, 94
 pressure drop, 94
 superficial velocity and residence time, 95
design issues
 adsorbent life, 89
dehydration methods, 88
 poor outlet water dew point, 88–89
 pressure drop, 89
 switching valves for adsorption and regeneration operation, 90
desorption, 37
dew-point control, 25
dew-point control and refrigeration systems, 35–49
 chillers, 44
 cost estimate of, 35
 economizers, 42
 multiple stage refrigeration, 46
 problems, 44–46
 process descriptions, 35–46
 refrigeration systems, 41

dew-point depression, 35
diethanolamine (DEA), 52
diethylene glycol (DEG), 37
differential pressure indicator (DPI), 102
diisopropanolamine (DIPA), 60
distillation, 108
downcomers, 131
downstream processing, 23
drip gas, 97
drive assembly, 45
dry gas loss, 12
dry point temperature, 109
dry stills, 108
economizers, 42
elemental sulfur, 57
entrained water vapor, 12
equilibrium, 5
equipment selection and design
 condensate stabilizer reboilers, 32
 condensate stabilizers, 32
 feed gas, 28
 gas and liquid heaters, 32–33
 mercury adsorber, 95
 mercury removal after-filter, 95
 pig receivers, 28
slug catchers, 30
stabilizer overhead compressors, 32
ethane-recovery process, 121–122
ethylene glycol (EG), 37, 77
eutectic freezing point, 77
evaporation, 41
evaporators, 35
exchangers, 127
endothermic process, 67
expanders, 35

Fahrenheit scale, 2
feed gas basis, 26
feed gas receiving and condensate stabilization, 23–33
 design basis and specifications for treatment units, 26–28

equipment selection and design, 28
treating and processing, 23–26
feedstock, 1
filtration, 65
fire point, 13
flammability, 13
flashing, 32
flash point, 13
flash tank, 77
flooding, 140
flow-control valve, 25
flow diagrams, 14, 16, 18, 19–20
flow rate, 28
flue gas, 12
fluid, 1
fluid properties, 1–4
 gravity, 3
 miscibility, 3
 pressure, 3
 solubility, 4
 temperature, 2–3
foaming, 65
fractionation, 131–133
fractionation and liquid treating, 131–143
fractionation, 131–143
monitoring of fractionalization plants, 139–140
NGL fractionation plants, 134–136
NGL product treating, 141–143
operating problems, 140
packed columns, 134
product specification, 138
fractionation column, 26
free-liquid removal, 94
freezing, 103
freezing point, 6
Fuller’s earth, 143
fundamentals
 combustion, 13
 composition, 10
 fluid properties, 1–4
 heat energy, 10–12
 hydrates, 7–9
 ideal gas law, 4–6
gallons per minute (gpm), 100
gas and liquid heaters, 32–33
gas cap, 1
gas chiller, 41
gas dehydration units, 92
gas/gas exchanger, 38
gas permeation, 62
Gas Processors Suppliers Association (GPSA), 6
gas production streams, 1
gas sub-cooled process (GSP), 119
gas surge tank, 41
gas treatment, 1
gas treatment unit, 26
gauge pressure, 3
general considerations for dehydration and mercury removal, 92
general operating considerations for gas treating, 65
glycol, 4
glycol cryogenic process, 38
glycol injection problems, 78–80
glycol/J-T valve cooling process, 38–40
glycol/propane system, 37–38
GPSA Engineering Data Book, 28, 84
gravity, 3
gross heating value, 12

heat energy, 10–12
heating value, 12
heavy-liquid product, 20
high-integrity pressure protection system (HIPPS), 28
high-liquid level alarm (HLA), 102
horsepower, 10
hot-rich oil flash tank, 104
hydrate plug, 7
hydrates, 7, 8–9, 73
hydrocarbon dew-point control, 35
hydrocarbon fluids, 1

hydrocarbon treating, 51–65
adsorption on a solid, 61–62
chemical reactions, 51–58
gas treating processes, 51
general operating considerations for gas treating, 65
membrane processes, 62–64
mixed chemical/physical absorption processes, 60
physical absorption processes, 58–60
hydrocarbon treating units, 27
hydrogen sulfide, 1

ideal gas law
about generally, 4
boiling point, 6
freezing point, 6
liquid phase, 5
vapor pressure, 5–6
immiscible liquids, 3
incorrect coalescer liquid level, 95
inhibitor injection, 76–80
initial boiling point, 13
inlet separation, 65
interstage coolers, 32

Joule-Thomson (J-T), 35
Joule-Thomson (J-T) expansion, 117
Joule-Thomson (J-T) valve system, 38
Kelvin scale, 2
kinetic hydrate inhibitors (KHIs), 76
KO drum (knockout drum), 36

latent heat, 11
lean glycol, 77
lean oil, 44
lean oil absorption
about generally, 97
absorber workings, 99–100
potential problems with, 102–103
presaturation, 100
recovery system, 98–103
level controllers, 44
level control valve, 38
liquid desiccants, 80, 82–84
liquid expansion, 6
liquid-liquid treating, 141–142
liquid phase, 5
liquid separator, 38
liquid-solid treating, 143
low dosage hydrate inhibitor (LDHI), 76
low temperature separation (LTS), 35

magnetic bearings, 126
matter, 10
membrane processes, 62–64
membranes, 146
mercaptans, 26
mercury adsorber, 95
mercury embrittlement, 92
mercury removal after-filter, 95
mercury removal costs, 94
mercury removal unit (MRU), 90
Merox process (commercial process), 142
metal sulfide on carbon or alumina, 93
metal sulfide systems, 93
methane, 8
methanol, 7
methyl diethanolamine (MDEA), 52
methyl ethylene glycol (MEG), 37
million standard cubic foot (MMscf), 100
miscibility, 3

Petroleum Extension-The University of Texas at Austin
miscible liquids, 3
mixed chemical/physical absorption processes, 60
mole, 10
molecular percent, 10
molecular sieve, 35, 93
molecular sieve process, 61, 85–86
molecular weight, 10
molecule, 2
monitoring of fractionalization plants, 139–140
MRU location, 94
multiple stage refrigeration, 46
mutually soluble liquids, 4

natural gas, 1
natural gas liquid (NGL) fractionation plants, 134–136
about generally, 133–136
butane splitter column, 137
debutanizer (DeC) column, 136
deethanizer (DeC) column, 137
desisbutanizer (DIB) column, 137
depropanizer (DeC) column, 137
natural gas liquid (NGL) product treating, 141–143
liquid-liquid treating, 141–142
liquid-solid treating, 143
natural gas liquid (NGL) recovery-cryogenic, 113–129
about generally, 113–114
applications, 115–122
cryogenics, 127–129
turboexpanders, 122–126
natural gas liquid (NGL) recovery-lean oil absorption, 97–111
lean oil absorption, 98–103
rejection system, 104–107
separation system, 108–111
natural gas liquid (NGL) recovery operations, 77
natural gas liquids (NGLs), 35
“Natural Gasoline Specifications and Test Methods” (GPA Publication 3132), 138
net heating value, 12
nitrogen rejection units (NRUs)
cryogenic NRU processes, 146–148
NRU processes, 149–152
process selection, 145–146
nonassociated gas, 1
nonregenerative acid gas removal, 51

off-gases, 12
oil-film resonance, 125
oil purification, 109–110
oil-to-gas ratio, 100
oil whip, 125
oil whirl, 125
operating problems, 140. See also problems overhead product, 134
oxidation, 57

packed columns, 134
paraffins, 88
physical absorption processes
propylene carbonate process, 59–60
Rectisol® process (commercial product), 60
Selexol® (commercial product), 59
physical properties comparison, 8–9
pigging, 30
pigging frequency, 28
pig receivers, 25, 28
pipeline grid, 35
plate fin exchangers, 127
poor outlet water dew point, 88–89
potassium carbonate, 51
pounds per square inch (psi), 3
pounds per square inch absolute (psia), 3
pounds per square inch gauge (psig), 3
prefractionator, 150
presaturation, 100
presaturation systems, 100
pressure, 3
pressure drop, 89, 94
pressure indicators (PIs), 44
pressure swing adsorption, 145
pretreatment, 147–148
problems
with dew-point control and refrigeration systems, 44–46
with ethane/butane in propane, 44
with fractionators, 140
in glycol injection systems, 78
with inadequate inlet separation, 65
with lean oil absorption, 102–103
with methanol, 77
in the recovery system, 102
with rejection system, 107
with retrograde condensation, 25
with separation system, 110–111
solved by the gas feed reception and condensate stabilization unit equipment, 33
with sulfur-impregnated carbon systems, 92
process descriptions
comparison of dew-point processes, 40
dew-point control and refrigeration systems, 35–46
glycol/J-T valve cooling process, 38–40
glycol/propane system, 37–38
silica gel process, 36–37
unit specifications, 40
Plant Processing of Natural Gas

process engineers, 2

process selection
 cryogenic absorption, 145
 cryogenic distillation, 146
 membranes, 146
 nitrogen rejection units (NRUs), 145–146
 pressure swing adsorption, 145

product specifications, 27, 138

propane, 3

propane-recovery process, 120

propylene carbonate process, 59–60

quench column, 70

Rankine scale, 2

reboilers, 16

reciprocating compressors, 32

reclaimers, 53

recompression, 148

reconcentrators, 38

recovery systems, 98–103

rectification section, 21

rectifying, 21

Rectisol® process (commercial product), 58–60

reflux, 20, 108

refrigeration systems, 35, 41

regeneration, 26

regeneration gas, 36

regenerative acid gas removal, 51

regenerative molecular sieve, 93

Reid Vapor Pressure (RVP) requirement, 28, 133

rejection system, 98
 hot rich-oil flash tank, 104
 possible problems with, 107
 rich-oil flash demethanizer, 105–106

retrograde condensation, 25

rich glycol, 77

rich oil, 99

rich-oil demethanizer (ROD), 105

rich-oil demethanizer bottoms, 105

rich-oil flash demethanizer, 105–106

rich oil fractionator, 107

royalty charges, 59

safety instrumental systems (SIS), 28

SCOT process (commercial product), 67, 70

Selexol (commercial product), 59

sensible heat, 11

separation system, 98

oil purification, 109–110
 possible problems with, 110–111
 still, 108–109

separation tower, 18

shell-and-tube exchangers, 16

Shell Claus Off-Gas Treating (SCOT) process, 67, 70

silica gel process, 35, 36–37

silica gels and activated alumina, 85

slipping (rejection), 54

slug catchers, 25, 30

solid desiccants, 84–85

solubility, 4

“Specification and Test Methods for LPGas” (GPA Publication 2140), 138

specific gravity, 3

split-vapor process, 119

stabilization column, 32

stabilizer overhead compressors, 32

stack loss, 12

staged separation, 42

standard cubic foot (scf), 12

sterically hindered amine-based solvents, 54

stills, 107, 108–109

stripping section, 20

subambient temperature, 58

Sulfinol® process (commercial product), 60

sulfur recovery, 67–70
 catalytic recovery, 68, 70
 catalytic step, 67
 thermal and catalytic reaction, 67
 thermal process, 67
 thermal reaction, 67
 thermal step, 67

sulfur recovery and Claus off-gas treating
 Claus off-gas treating, 70
 sulfur recovery, 67–70

sulfur recovery units (SRUs), 54, 67

superficial velocity and residence time, 95

sweetening acid gases, 51

switching valves for adsorption and regeneration operation, 90

Tail gas, 54

technology selection
 design basis and specifications for dehydration and mercury removal, 92
 metal sulfide on carbon or alumina, 93
 regenerative molecular sieve, 93
 sulfur-impregnated activated carbon, 92–93

temperature, 2–3

Petroleum Extension-The University of Texas at Austin
temperature differential, 12
temperature indicators (TIs), 44
thermal and catalytic reaction, 67
thermal process, 67
thermal reaction, 67
thermal step, 67
thermocouples, 88
thermodynamic inhibitors, 76
thiobacillus bacteria, 57–58
total installation cost (TIC), 93
towers, 67
tower with trays, 18
trays, 18
treating and processing, 23–26
triethylene glycol (TEG), 37
triple-column cycle, 149
truboexpanders, 122–126
turboexpander process, 115–119
turboexpansion, 97
turndown ratio, 26
Twister™ Supersonic separator (commercial product), 40
unit specifications, 40
upstream, 25
vacuum, 59
valve trays, 131
vaporization, 53
vaporizing, 5
vapor pressure, 5–6
vapors, 4
volatility, 14
volume expansion, 6
water dew-point control, 35
weirs, 131
wet stills, 108
working fluid, 35
Y-grade, 97
To obtain additional training materials, contact:

PETEX
THE UNIVERSITY OF TEXAS AT AUSTIN
PETROLEUM EXTENSION SERVICE
10100 Burnet Road, Bldg. 2
Austin, TX 78758

Telephone: 512-471-5940
or 800-687-4132
FAX: 512-471-9410
or 800-687-7839
E-mail: petex@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex

To obtain information about training courses, contact:

PETEX
LEARNING AND ASSESSMENT CENTER
THE UNIVERSITY OF TEXAS
4702 N. Sam Houston Parkway West, Suite 800
Houston, TX 77036

Telephone: 281-397-2440
or 800-687-7052
FAX: 281-397-2441
E-mail: plach@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex