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Units of Measurement

N
system and the metric system. Today, the United States is one of

hroughoutthe world, two systems of measurement dominate: the Enilis
a few countries that employ the English system. E

The English system uses the pound as the unit of weight, ot as
the unit of length, and the gallon as the unit of capacity. Ja_the English
system, for example, 1 foot equals 12 inches, 1 yard equa ifiches, and 1
mile equals 5,280 feet or 1,760 yards.

The metric system uses the gram as the uni f@ t, the metre as the
unit of length, and the litre as the unit of ca &In the metric system, 1
metre equals 10 decimetres, 100 centimetre$jor 1,000 millimetres. A kilo-
metre equals 1,000 metres. The metric sfistcn, unlike the English system,

uses a base of 10; thus, it is easy to convert from one unit to another. To

convert from one unit to anotheri\ glish system, you must memorize
or look up the values.

In the late 1970s, th nth General Conference on Weights and
Measures described a ted the Systeme International (SI) d’Unites.

Conference partici \based the SI system on the metric system and de-
signed it as an@nal standard of measurement.

The Rota 1lling Series gives both English and ST units. And because
the SI syst@mploys the British spelling of many of the terms, the book
foll @e spelling rules as well. The unit of length, for example, is metre,
no&en (Note, however, that the unit of weight is gram, not gramme.)

7 Toaid U.S. readersin making and understanding the conversion system,

O include the table on the next page.

*
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English-Units-to-SI-Units Conversion Factors

Quantity Multiply To Obtain
or Property English Units English Units By These Sl Units ’\Q
Length, inches (in.) 254 millimetres (mm) 6\'
depth, 2.54 centimetres (cm)
or height feet (ft) 0.3048 metres (m)
yards (yd) 0.9144 metres (m) v
miles (mi) 1609.344 metres (m)
1.61 kilometres (km) \
Hole and pipe diameters, bit size inches (in.) 254 millimetres gl.nn{
Drilling rate feet per hour (ft/h) 0.3048 metres per‘h‘c‘OH/ h)
Weight on bit pounds (Ib) 0.445 decaner&@(dN)
Nozzle size 32nds of an inch 0.8 mjillim ht?es (mm)
barrels (bbl) 0.159 cubio’metres (m?®)
159 litres (L)
gallons per stroke (gal/stroke) 0.00379 cu&metres per stroke (m’/stroke)
ounces (0z) 29.57 millilitres (mL)
Volume cubic inches (in.%) 16.387 O cubic centimetres (cm?)
cubic feet (ft*) 28.3169 litres (L)
0.02 cubic metres (m?)
quarts (qt) 0. &K’ litres (L)
gallons (gal) ! litres (L)
gallons (gal) 00379 cubic metres (m?®)
pounds per barrel (Ib/bbl) 95 kilograms per cubic metre (kg/m?)

‘AQ&NS

barrels per ton (bbl/tn) «

cubic metres per tonne (m’/t)

Pump output
and flow rate

gallons per minute ( O 0.00379

gallons per hour (g 0.00379
barrels per stroke ( ke) 0.159
barrels per minute (b in) 0.159

cubic metres per minute (m’/min)
cubic metres per hour (m*/h)

cubic metres per stroke (m*/stroke)

cubic metres per minute (m?*/min)

Pressure pounds per ejinch (psi) 6.895 kilopascals (kPa)
006895 megapascals (MPa)
N °F-32 .
Temperature degl;es ahrenheit (°F) degrees Celsius (°C)
A 1.8
Mass (weight) \‘ ounces (0z) 28.35 grams (g)
i O pounds (Ib) 453.59 grams (g)
\ 0.4536 kilograms (kg)
% tons (tn) 0.9072 tonnes (t)
‘0 pounds per foot (Ib/ft) 1.488 kilograms per metre (kg/m)
Mud weigh - pounds per gallon (ppg) 119.82 kilograms per cubic metre (kg/m?)

pounds per cubic fop 3)

16.0kilograms per cubic metre (kg/m?)

Pressu@Ent

pounds per square inch

per foot (psi/ft) 22.621 kilopascals per metre (kPa/m)
F viscosity seconds per quart (s/qt) 1.057 seconds per litre (s/L)
« \Yield point pounds per 100 square feet (Ib/100 ft*) 0.48 pascals (Pa)
,\\}Sel strength pounds per 100 square feet (Ib/100 ft*) 0.48 pascals (Pa)
\uﬂter cake thickness 32nds of an inch 0.8 millimetres (mm)
N Power horsepower (hp) 0.75 kilowatts (kW)
&&' square inches (in.?) 6.45 square centimetres (cm?)
@ square feet (ft?) 0.0929 square metres (m?)
Area square yards (yd?) 0.8361 square metres (m?)
square miles (mi?) 2.59 square kilometres (km?)
acre (ac) 0.40 hectare (ha)
Drilling line wear ton-miles (tn®mi) 14.317 megajoules (M])
1.459 tonne-kilometres (t*km)
Torque foot-pounds (ft*1b) 1.3558 newton metres (N*m)

XiX



brief consideration of where the petroleum came from in the first pt
The popular organic theory states that the hydrogen and carbo%
s

make up petroleum come from the remains of microscopic orgapi

ny examination of the subject of petroleum geology must first begin with g I nt ro d u Cti on

silt, sand, and mud. Eventually, a thick body of sedi iched by the
organic remains accumulated on the bottom of the dgean.

Over a very long period of time, the greatweight of the overlying
sediments pushed the lower layers deep i @arth and changed the
bottom beds into rock. In such an envirémment, the high heat and intense
pressure—along with bacteria, chemical #eactions, and other forces—had
a profound effect on the organic irts. The remains were transformed
into petroleum, which subseque\ und a home within the rock’s small

porous spaces (fig. 1.1). 06

PETROLEUM AND NATURAL GAS FORMATION

OCEAN
50-100 MILLION YEARS AGO

}X‘MVAM\

SAND AND SILT
ROCK
SAND AND SILT

PLANT AND ANIMAL REMAINS OIL AND GAS DEPOSITS

Figure i.1 Petroleum formation

Source: U. S. DEPARTMENT OF ENERGY,
ENERGY INFORMATION ADMINISTRATION



Introduction

PRACTICAL PETROLEUM GEOLOGY

Figure i.2 Porosity within rock
(magnified view)

Figure i.3 Connected pores
resulting in permeability

(magnified view)

One common misconception about the nature of petroleum is that
it exists in large underground formations that are similar to flowing rivers
and lakes. Instead, most petroleum is found within rocks. Some rocks have
a high porosity and allow for a large amount of petroleum to reside in the
pores. Other rocks have few pores, which allows for less petroleum (fig. i.2).

Over time, as the Earth shifted, folds, faults, and other formatio
opened new channels through which the petroleum in the rock layers c
flow. Rock layers with high permeability allowed the petroleum to flo%y more
easily through the rock’s pores, whereas rock layers with low p ility

had the opposite effect (fig. 1.3).
Eventually, the petroleum moved around and b trapped by

impervious layers of rock. These areas—called traps e hydrocarbons
within porous layers of rock, thereby forming » 75. A reservoir’s size is
determined by the amount of oil and gas it o{:&s. A reservoir might be
broad and shallow, narrow and deep, or anyVariation in size. And it is these
reservoirs that drillers want to find and ta@

Armed with this knowledgfi (&e origins of petroleum, we can now
focus on the main topic of the l@K oleum geology.

N\

R\%

*



In this chapter: *0

* The principle of uniformitarianism ’\\,
* Geologic time and the origins of the Earth @
¢ Plate tectonics and the effects of a mobile crust, A@

O3

-

* Types of rocks and minerals

What comes to mind when you hear the ogy? We tend to think of
geology in terms of landscapes too vast&l y comprehend—volcanoes,

mountain ranges, canyons—created byfrces beyond our control. We also

tend to think of the beauty ané& of the natural world—such as the

landscapes in Arches Nationa, or the eruption of Mount St. Helens

(figs. 1.1 and 1.2).
SO

Basic Concepts

of Geology

Figure 1.1 Arches National Park
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In this chapter: O
* The means by which sedimentary rock is formed ‘@

* The transport and deposition of sedimentary particles \6

* Lithification and classification of sedimentary chQ S . .
edimentation
* The principles of stratigraphy \

Because nearly all of the world’s supply o Qum is found in sedimen-
tary rock, it is the most interesting typ€ of%ock for petroleum geologists.

To understand the correlation betw

etroleum and sedimentary rock,
we must learn more about sedinze in other words, how sedimentary

particles are formed, transpor osited, and transformed into the great

sheets of rock that cover r@

The process @ch sedimentary rock is formed can perhaps best be ORIGINS OF
demonstrated by examining its smallest unit—the sedimentary particle. As SEDIMENTARY
does th as a whole, the individual particle embodies the history of PARTICLES
bot& rce material and the changes itundergoes on the Earth’s surface.

O

\$Sediments are classified primarily by grain size (table 2.1). Gravel, sand, Clastics
Q and silt particles can be of a variety of minerals—quartz and feldspar are

e world’s land area.

common—while clay particles are microscopic platelets of various hydrous
aluminum silicates. Gravel, sand, and siltare mostly noncohesive; thatis, they
do not stick together. Clay, on the other hand, is very cohesive; its particles
are attracted to one another by minute electrical charges and adsord water
readily, causing clay to swell.

35
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In this chapter: %
* The origins of petroleum \r

*
* Primary and secondary migration of petroleum @
* The methods by which petroleum accumulates.\A@

* Types of traps and their characteristics \Q

N\

-
For most of the time that humans have begn(@ of oil and natural gas,
these substances were thought of as min that had formed out of nonliv-
ing rock, such as gold, sulfur, and salt, ough oil had an odor suggesting
organic matter and although na a8 burned like swamp gas, most of
the gas and oil escaping from t nd seemed to come from solid rock

deep beneath the surface, w, othing lived.

However, beginni olit two centuries ago, the geologic insights of
scientists such as Ja ‘@cton, Charles Lyell, and others showed that the
rocks in which oi nd were once loose sediment piling up in shallow
coastal Waters% fish, algae, plankton, and corals had once lived. As a
result of sueh, insights, it seemed possible that oil and gas had something
to do Wée decay of dead organisms, just as coal, with its leaf and stem

impri emed to be the fossilized remains of swamp plants.

\ ter advances in microscopy revealed that oil-producing and oil-

ing rocks often contain fossilized creatures too small to be seen with

\\'!!e unaided eye. Chemists discovered that carbon:hydrogen ratios in pe-

troleum are much like those in marine organisms and that certain complex
molecules are found in petroleum source rocks that are otherwise known to
occur only in living cells. But it was the fact that most could be shown to
have originated in an environment rich with life that clinched the organic
theory of the origin of petroleum.

Oil and Gas

Accumulation

83



In this chapter: :
* Collecting data using survey tools and databases ‘\\,
* The evolution of seismic surveys and interpretation @

* Types of well logs and core samples @

Exploration

* Contour maps and digital models

SO

In the past, exploring for petroleum wasam N&od luckand guesswork.

In the early days of exploration, drilling oil or natural gas seeps where
hydrocarbons were present on the sugface was the most successful method

for finding hydrocarbons under th utd. Today, petroleum explorationists
*

with extensive geologic trainin \l histicated technologies and scientific
1

principles and guidelines to and gas.

Surface and subsur logic studies drive the discovery of oil and
gas. Seismic data, wel, a, aerial photographs, satellite images, gravity
and magnetic daea ther geologic data provide information that help
determine wh

ments anfl&sa ples brought up while drilling the exploratory well and
t

run speci

oddrill an exploratory well. Specialists examine rock frag-

s into the hole to get more information about the formations

underBromnd. By examining, correlating, and interpreting this information,
rdtionists can accurately locate subsurface structures that might contain

ocarbon accumulations worth exploiting.

%

In relatively unexplored areas, petroleum explorationists study the topog- SURFACE GEOGRAPHICAL
raphy of the surrounding land. The natural and manmade features on the STUDIES

surface of the land can help explorationists to draw conclusion about the

character of underground formations and structures based largely on what

appears on the surface.

113



In this chapter: *
*
* Summary of an economic analysis \

* Mineral rights and estimated reserves \%

* Regulation and taxation considerations &

* Cash flow analysis, present value conceptﬁek analysis

<

When the ultimate decision of whether t@ade, other data are evalu-
ated along with all of the preliminary geop sical and geologic evidence.
Many of these added considerations afe*financial and practical ones. A mod-
ern geologist has to be acquainte the factors influencing wellbead and
product pricing, transportati ts, fluctuations in supply and demand,
associated political situati@ d regulation and taxation, as well as the
current costs of dr1111@

All of these factotssare balanced and weighed. Much of this type of
evaluationisd %managerial level of the operating company; however,
because the geologist is often concurrently evaluating physical evidence, the
two type ta become closely related. Therefore, some economic and
legal dge on the part of the geologist is required.

%
>

Economics

147



In this chapter: %O

* Methods for logging : \r

* Formation testing &6\

¢ Completion methods and equipment

< ..
¢ Initiation of flow and exploration success ’\A IVI on ItO ri ng
OO the Well

NS

The commitment to drill an exploratory wel motion a long chain
of events. Well plans are engineered, and#he Sige is surveyed and prepared

for the drilling rig (fig. 6.1). P

Figure 6.1 Surveying using a
global positioning system

169



In this chapter: O

* Productivity, efficiency, and types of maps ’@
* Mathematical estimation of reserves @

* Models and simulation . AQ Field
* Recovery improvement QQ\ Development

Developing a field requires a solid gras@mal geology and reliable EXPANDING AND
geol

well data. It is desirable to have a single gist or a single team working MAINTAINING
on development because so much s on the previous history of each PRODUCTIVITY
drilled well. While the explordt ogram might call for perhaps three

wells to locate the structural \along a simple anticlinal structure, the
developmentprogram mé@account for the complexities of the reservoir.

Productivity within cture will vary.

Selecting si &wells tosucceed the discovery well requires the geologist Selecting Well Sites
to visualj reservoir below the surface. Generally the position expected
tob rally highest will be drilled first. This and the next few well sites
a&x\ monly picked on the basis of the seismic picture. As wells are drilled,
ation velocity surveys of the reflecting surfaces are made downhole.
& ‘hese surveys enable the seismic maps to be expressed more accurately in
@ terms of depth; as a result, a better picture of the structural high can be
Q generated. As subsurface contour maps are developed by the geologist, these
maps replace the seismic picture for decision-making purposes.

199



ompanies who sell it in its various forms and, subsequently, to
consumers who buy it takes place long past the point when a geologis?
be involved. But no part of the industry would exist if the petro & ere
not first discovered where it had been slowly forming and coll Qwithin
the Earth for millions of years. And it is within this discov se that an
understanding of petroleum geology is essential.

ﬁ. substantial portion of the process of delivering petroleum to th%O Aft erwor d

The petroleum geologist knows that the Earth,is/an ever-changing
place and that the forces at work today have beeprat work for all of the bil-
lions of years of our planet’s history. The %S geologist knows how
organic matter was transformed in oil an&o rvast lengths of time. The
petroleum geologist knows the properties of the rocks wherein the oil and
gas hide and the irregularities withi rocks. The petroleum geologist
knows how petroleum accumﬁlx nd migrates and the kinds of areas
where it becomes trapped. oleum geologist knows how to explore
formations and the waysd ich to narrow the odds in favor of discovery.
And based in part op e things that the petroleum geologist knows,

companies in se discovered oil and gas can analyze the economics

of a venture, t@ formations being drilled, and develop fields to meet
the worldwide demand for oil and gas.

As aid at the outset of this book, unique challenges present

themgelves with each new drilling endeavor, and each well comes with its

rticular set of traits. But in an inherently unpredictable field, the

rtance of the petroleum geologist and the knowledge she or he brings

\gto bear remains constant.

4
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Throughout this index, findicates a figure and 7 indicates a table on that page.

accumulations of oil and gas. See 0il and gas accumulations
acid fracturing, 196

acid stimulation, 196

acoustic impedance, 188

acoustic logs, 134, 134f. See also sound waves

acre-feet in a reservoir, 157

ad valorem taxes, 159

adsorption, 35

aeolian deposits, 52. See also wind transport of sediments
aerial photographs, 114

aerobic bacteria, 87
air gun, 122, 127 . %
algae, 12, 18, 86 N\

A\

alkane, 84 K@
allowable, 157158 @
alluvial fan, 51, 51f )
Alps, 28 \
amphibians, Devonian period, 14 Q
Anadarko Basin, 25
anaerobic bacteria, 87 @
analog models, 222
analysis, economic, 151 &Q
andesite, 31 ’
angle of repose, 42 Q
angular unconformity, 75, 76 O
anhydrite, 68 \
annular pressure, 185 6
annular space, 185 Q
anomalies, micromagiétoinéter detecting, 119
anticlines

hydrodynaiigAraps and, 108, 109f

overview of, 9, 79f

petrol cumulation and, 94, 95f, 96, 111-112

-99, 100, 101f

trap
apr lomerate, 51
LQIN ational Park, 3/

@ ie, G.E., 136
& enites, 66

argon-40, 186

arkose, 66

aromatic hydrocarbons, 84, 85/
asphalt, 73, 84

asphalt seal trap, 107f
asphaltic crude, 84

associated free gas, 98
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Austin Chalk, 72, 72f, 106

authority for expenditure, 156

avalanche, 38. See also mass movement of sediments
azimuth, 184, 184f

azimuthal data, 181, 184

backbarrier complex, 54f, 55
backshore zone, 54, 54f, 55
bacteria, 12, 18, 87

bar deposits, 50, 104

basalt, 31

base maps, 140

basement rock, 119

bauxite, 186

beach sand trap, 104, 104f
beaches, 54-55, 54f. See also sand
bed load, 45, 45f

bedding planes, 42, 74, 74f
beds, marine delta, 53

benzene ring, 84, 85f
biofacies map, 141

bioherm trap, 105-106, 105f
biosphere, 63

biostratigraphy, 139

biotic community, 86-87, 86f
biotite, 38

bismuth, 186 @
block diagrams, 145, 145f, 213f Q
blowout, 185 &
blue-green algae, Precambrian era, 12, 18 o ¢
bonuses, land lease and, 152 Q

bottomhole assembly, 179, 180f, 18‘1@
bottomhole money, 156 @

bottomset beds, 53
Tﬂ'méf, 109

Bouguer gravity map, 140 @
breccia, 65, 651 \
brecciated fault trap]
buildup of fluid, 1
bulk density, 1

bulk modu 8
buoyanc oleum migration and, 92, 92f, 109

Bu cean Energy Management, Regulation, and
‘&ement, 156
e

ne, 85/

’%zane, 84, 85, 98

QQ}

butylene, 85f

calcite, 40, 62, 69

Canyon de Chelly, 8f

capillarity, 93

capitalizing drilling costs, 159-160, 160z

274

caprock, 110

carbon, 1, 17, 84

carbon dioxide, 12, 17, 38, 40, 69
carbonate mud, 40, 56

carbonate rocks, 63, 69
carbonation, 38

Carlsbad Caverns, 37, 37f

cash flow, 149

cash flow analysis, 151, 161-162
catastrophism, 6, 10

c)’\\Q
?Q
>

>’

caverns, 106

cementation, 62-64, 63f

Cenozoic era, 13f, 14, 112

chemical testing for hydrocar o@
chemical weathering, 38 &
chert, 64

Christmas tree, 194, 1®
clastics

cementatio %
classificati Kﬂ 67
compa %f 62

$35-38

ove
fé%of, 29,29

ct
mentation of, 62
Q:ompaction of, 62, 62f
grain size of, 36¢
petroleum migration in, 90
properties of, 35
slumping, 43
climate conditions, using in cost analysis, 161
coal, 21, 69
coastlines, 19, 19f
Colorado River, 7
combination petroleum traps, 110
compaction, 62, 62f, 188
compaction anticline, 106
completing a well. See well completion
completion rig, 194, 194f
composite log chart, 135f
compounding (present value concept), 163, 163f
compressional velocity, 188
condensate, 202
conductor line, 130
cone-shaped charge, 195
conglomerates, 64—66, 64f
coning of water, 202
connate water, 90
contact, 74
contact metamorphism, 33-34, 33f
continental crust, 22-24, 22f
continental depositional environment. See also
depositional environment
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aeolian deposits in, 52
desert, 51
fluvial deposits and, 48-51, 48f
glacial, 52
lacustrine, 51
overview of, 47
continental drift, 19, 20f, 22-24, 26
Continental Oil Company (Conoco), 125
continental rifting. See rifting
continental rise, 56f, 58
continental shelf, 18, 56, 56f
continental slope, 56f, 58
continent-to-continent convergence, 27-28, 27f
contour maps, 57f, 140-141, 140f, 200f. See also maps;
structural maps
convergence, plate, 27-28, 27f
coral reef, 57
core samples, 136-138, 137f, 177, 177f. See also samples
coring bits, 136, 137f
correlating rock formations, 72-73, 73f
cost method, 160
costs, planning for, 197
creationism, 10
Cretaceous period, 14, 23f, 69, 77, 214
cross-cutting, relative age and, 82, 82f

crystalline texture, 29-30, 291, 63 @

cutting samples, 138, 173-176, 173f, 174t Q

cyclohexane, 85f &

cycloparaffin, 84, 85/ 2
O

data collection @\

decoding, 182f 5 \

for developing a wel

for estimating res & 21f

from formatién 5 190

for a lithof@ip’, 215¢

in maringenvi¥onments, 128, 128f

techn@or, 143-144

thro ibraries and public records, 117

S

eferenced values, 207, 207f

ision tree, 148f, 151, 166, 167f

decomposition, aerobic, 87

deliverability plots, 190

density, measuring, 187

Department of the Interior, 158

depletion in taxation, 159

deposition, 6, 48-51, 48f, 59

depositional environment, 9, 47, 213-214. See also
continental depositional environment; marine environments

darcy, 93

dat

depreciation, 159

desert environments, 51
development plans, 203, 203f
development well, 130, 150
Devonian times, 214
diagenesis, 61, 64, 69
diapirism, 99

diapirs, 110, 1101

diatomite, 69

diatoms, 77, 77f %’

differentiation, 97-98, 97f 6
dimethyl cyclopetane, 85f (b
dinosaurs, 14

Dinoseis, 125

diorite, 31 &6
dip, 78-79, 79f, 101 \
dip slip fault, 80,

directional drilling, 150/, 179, 184
disconformi 7%75 f
discount flow rate of return, 164

discou %present value concept), 163
di well, 149

* dissolved gas drives, 220
&solved load, 46

crude oil, 84, 156, 218, 220 0 division order, 156
crust, Earth, 9, 171, 34

dolomite, 32, 69

dolomitic limestone, 64

dolomitization, 64

dome, 98, 99f

doodlebugs, 121

downcutting, 46/

drag fold, 102

draped anticline, 79f

drawdown of fluid, 190

drill collar, 181, 187, 188, 189

drill stem test, 138, 178, 189, 189f

drill string components, vibrations and, 185
driller’s log, 130

drilling, expensing costs of, 159-160, 160z
drilling depth, 207

drilling fluid, 170, 179

drilling mud, 138

drilling rates, 202

drive mechanism enhancement, 224-225
dry hole, 118, 150, 165-166, 165t

dry hole money, 156

dunefield, 54, 54f

Earth
beginnings of, 16-18
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cross section of, 17f
elements, 17
estimating age of, 11-12
earthquakes, 8
East Pacific Rise, 24, 26
East Texas Field, 157
economics in petroleum acquisition
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