Contents

Figures vi
Tables xiv
Preface xv
About the Author xvii

1 Introduction 1

2 History 7
- The Drake Well, 1850s 9
- California, Late 1800s 10
- The Lucas Well, 1901 11
- The Middle East, 1900s 13

3 Cable-Tool and Rotary Drilling 15
- Cable-Tool Drilling 15
- Rotary Drilling 16
 - Rotating Systems 18
 - Fluid Circulation 19

4 Rotary Rig Types 21
- Land Rigs 22
- Mobile Offshore Rigs 23
 - Bottom-Supported MODUs 24
 - Floating Units 50

5 People and Companies 37
- Operating Companies 38
- Drilling Contractors 39
- Drilling Contracts 39
- Service and Supply Companies 40
- People 44
 - Drilling Crews 44
 - Drilling Crew Work Shifts 50
 - Crew Safety 50
 - Other Rig Workers 51

6 Oil and Gas: Characteristics and Occurrence 55
- Natural Gas 55
 - Liquefied Natural Gas (LNG) 56
 - Liquefied Petroleum Gas (LPG) 56
 - Natural Gas Liquid (NGL) 57
- Crude Oil 57
- Refined Hydrocarbons 57
- Oil and Gas Reservoirs 58
 - Characteristics of Reservoir Rocks 58
 - Origin and Accumulation of Oil and Gas 60
 - Petroleum Traps 61
- Types of Wells 69

7 The Drill Site 71
- Choosing the Site 71
- Preparing the Site 73
Surface Preparation 73
Earthen Pits 73
Cellars 77
Rathole 77
Mousehole 79
Conductor Hole 80
Moving Equipment to the Site 82
 Moving Land Rigs 82
 Moving and Setting Up Offshore Rigs 84

8 Rigging Up 85
 Substructures 85
 The Drawworks 88
 Raising the Mast or Derrick 89
 Derrick and Mast Heights 90
 Mast Load Ratings 91
 Rigging Up Additional Equipment 91
 Offshore Rig-Up 92

9 Rig Components 93
 Power System 93
 Mechanical Power Transmission 97
 Electrical Power Transmission 97
 Hoisting System 100
 The Drawworks 101
 The Catheads 102
 The Blocks and Drilling Line 104
 Mast and Derricks 109
 Rotating Systems 110
 Rotary-Table System 110
 Top Drive 117
 Downhole Motors 118
 The Drill String 120
 Bits 122
 Circulating System 126
 Drilling Fluid 126
 Circulating Equipment 128

10 Normal Drilling Operations 135
 Drilling the Surface Hole 135
 Tripping Out with a Kelly System 148
 Tripping Out with a Top-Drive Unit 152
 Tripping Out with a Pipe Racker 152
 Running Surface Casing 154
 Cementing 158
 Tripping In 160
 Drilling Ahead 162

11 Formation Evaluation 163
 Examining Cuttings and Drilling Mud 163
 Well Logging 165
Contents

Drill Stem Testing 168
Coring 170

12 Completing the Well 173
 Plugging and Abandoning a Well 173
 Completing a Producing Well 173
 Production Tubing 174
 Perforating 176
 Well Testing and Treating 177
 Acidizing 177
 Fracturing 177
 Gravel Packing 178

13 Special Operations 179
 Directional Drilling 179
 Slide Drilling with a Motor 180
 Rotary Steerable Assemblies 181
 Fishing 181
 Well Control 183

14 Rig Safety and Environmental Concerns 189

15 Conclusion 191

Appendix 1: Units of Conversion 193
Appendix 2: Figure Credits 195
Glossary 207
Index 233
Paul M. Bommer is a Senior Lecturer in Petroleum Engineering at The University of Texas at Austin. He received his Bachelor’s ('76), Master’s ('77), and Doctoral ('79) degrees in Petroleum Engineering, all from The University of Texas at Austin.

He spent over twenty-five years in industry as an oil and gas operator and consultant in Texas and other parts of the United States. He and his brother Peter (UT, BS-PGE ‘78) are co-owners in the firm of Bommer Engineering Company.

He is a third generation oil man following his father (UT, BS-PGE, ’50) who was a highly regarded petroleum engineer in Texas as the principal owner of Viking Drilling Company in San Antonio and his paternal grandfather who was a field superintendent in Oklahoma, East Texas and on the Texas Gulf Coast for Stanolind (later Amoco) Oil Company. As with most oilfield families, his mother (UT, BS-HEc, ’49) made sandwiches for the crews, curtains for the tool pusher’s trailer, created a home, and raised the kids.
This book is an introduction to the art and science of drilling oilwells. While this book focuses on well drilling in the oil and gas industry, it is important to note that wells can be drilled for a variety of purposes. Not all wells are used to extract oil and gas from the earth. Wells are also drilled to produce fresh water for irrigation and to supply water to cities. Some wells are drilled into deep layers of rock to dispose of hazardous waste. Greenhouse gases, such as carbon dioxide, can be captured and injected into underground layers for permanent disposal. The same well drilling methods can be applied to all these uses.

Drilling rigs are large and noisy. They operate numerous pieces of enormous equipment (fig. 1). The purpose of a drilling rig is only to drill a hole in the ground. Although the rig is big, the hole it drills is relatively small. The purpose of the drill hole is to tap an oil or gas reservoir often thousands of feet or hundreds of metres below the surface of the earth. The drill hole is usually less than one foot (30 centimetres) in diameter at final depth.

Figure 1. Drilling rigs are large to accommodate the size of the drilling equipment and pipes.
The story of modern oilwell drilling began at the start of the industrial revolution. Workers wanted better ways to illuminate their homes when they returned from the factories. The steam-powered industrial machines increasingly used in factories also required good quality lubricant oils.

Responding to the demand for reliable lighting, companies began making oil lamps, which were brighter than candles, lasted longer, and were not easily blown out by errant breezes. The best source of oil to burn in the early oil lamps was sperm whale oil. Whale oil was clear, almost odorless, light in weight, and burned with little smoke.

While everyone preferred whale oil, by the mid-1800s it was so scarce that only the wealthy could afford it (fig. 7). Whalers in the New England region of the United States had nearly hunted sperm whales into extinction. There was a demand for something to replace whale oil.

Oil seeping out of shallow accumulations is a common, worldwide phenomenon. The area around Baku, Azerbaijan, had been known from ancient times to hold oil and natural gas seeps. The first modern oilwell was drilled in Baku in 1846. This well was drilled to a depth of 69 feet (21 metres). By 1872, due mainly to lamp oil demand, the Baku area had so many wells that it became known as the “Black City.”

Figure 7. Whaling ships in New Bedford, Massachusetts. The barrels in the foreground are filled with whale oil.
Cable-tool drilling and rotary drilling techniques have been available since people first began making holes in the ground. Rotary rigs dominate the industry today, but cable-tool rigs drilled many wells in the past. Over 1,600 years ago, the Chinese drilled wells with various primitive yet efficient cable-tool rigs, which they continued to use into the 1940s. To quarry rocks for the pyramids, the ancient Egyptians drilled holes using hand-powered rotating bits. They drilled several holes in a line and stuck dry wooden pegs in the holes. Then they saturated the pegs with water. The swelling wood split the stone along the line made by the holes.

Most wells today are drilled with rotary rigs based on the Hamil Brothers’ design at Spindletop.

CABLE-TOOL DRILLING

A steam-powered cable-tool rig was used by Drake and Smith to drill the Oil Creek site in Pennsylvania. The early drillers in California and elsewhere also used cable-tool rigs. The principle of cable-tool drilling is the same as that of a child’s seesaw. When a child is on each end of a seesaw, it moves it up and down. The rocking motion demonstrates the principle of cable-tool drilling.

To explore the concept further, one could tie a cable to the end of the seesaw and let the cable dangle straight down to the ground. Next, a heavy chisel with a sharp point could be attached to the dangling end of the cable. By adjusting the cable’s length so the end of the seesaw is all the way up, the chisel point hangs a short distance above the ground. Releasing the seesaw lets the heavy chisel hit hard enough to punch a hole in the ground. Repeating the process and rocking the seesaw causes the chisel to drill a hole. The process is quite effective. A heavy, sharp-pointed chisel can slowly force its way through rock, bit by bit, with every blow (fig. 15).

A cable-tool rig operates much like a seesaw with a powered walking beam mounted on a derrick. The walking beam is a wooden bar that rocks up and down on a central pivot. At Drake’s rig, a 6-horsepower (4.5-kilowatt) steamboat engine powered the walking beam. As the beam rocks up, it raises the cable attached to a chisel, or bit. Then, when the walking beam rocks down, heavy weights above the bit, called sinker bars, provide weight to ram it into the ground. The bit punches its way into the rock, and repeated lifting and dropping make the bit drill into the earth. The driller lets out the cable gradually as the hole deepens. The derrick provides space to raise the cable and pull the long drilling tools out of the hole using one of several winches called the bullwheel.

Figure 15. A cable-tool rig
A variety rotary drilling rigs might be used depending on the location and geography of the reservoir.

Offshore, the ocean environment plays an important role in rig design. Rigs may be broadly divided into two categories: rigs that work on land (fig. 25) and rigs that work offshore (figs. 26 and 27).

One type of offshore drilling facility is a platform. Although drilling occurs from platforms, most companies use platforms for production of oil and gas rather than for drilling. Because this book concentrates on drilling and not platforms, more information about platforms is available in another PETEX publication: A Primer of Offshore Operations.

If a platform is designed for drilling, the rig on the platform operates just like a land rig. Several wells can be drilled from the same platform, and the rig is moved or skidded over to the next slot in the platform to begin a new well.

Figure 25. A land rig

Figure 26. An offshore jackup rig

Figure 27. An inland barge rig
Whether on land or offshore, and regardless of size, all rigs require personnel to operate them. There are people employed by companies involved in drilling work all over the world. They drill wells on land and ice, in swamps, and on water as small as lakes or as large as the Pacific Ocean. Drilling is demanding work, continuing 24 hours a day, 7 days a week, in all kinds of weather (fig. 46).

Drilling is also increasingly complex. The technical complexity is so great that no single company is diverse enough to perform all the required work. Consequently, many companies and individuals are involved in drilling a well, including operating companies, drilling contractors, and service and supply companies.

Figure 46. Workers on a drilling rig
The location of the well, or drill site, varies as the surface geography of the earth varies. In the industry’s early days, geologists and wildcatters were able to find oil and gas in places readily accessible. As people began using more hydrocarbons, the oil industry extended its search for oil and gas worldwide. Today, companies might drill wells in the frozen wilderness, remote desert, marshes, jungles, rugged mountains, and deep offshore waters. A drill site is anywhere oil and gas exists or might exist.

CHOOSING THE SITE

The operating company considers several factors when deciding where to drill. A key factor is the company knows or believes that hydrocarbons exist in rocks beneath the site. Sometimes, an operator drills a well in an existing field to increase production from it. In other cases, an operator drills a well on a site where no one has previously found oil or gas.

Where no production has occurred, a company often hires geologists and geophysicists to find promising sites (fig. 74). Geologists and geophysicists are called explorationists because they explore areas to determine where hydrocarbons might exist. Major companies have an explorationist staff, while independent companies might hire consultants or buy information from companies that specialize in geological and geophysical data.

Figure 74. Geologists working at a prospective petroleum area at the Peel Plateau in the Yukon
Rigging up an offshore drilling rig is usually not as complicated as rigging up a land rig. Most offshore rigs can be moved over water with almost no need to disassemble major parts. Onsite, the offshore rig is stabilized by placing rig supports on the ocean floor for bottom-supported rigs or, by anchors, anchor chains, and wire or polyester rope for floaters. Only the dynamically positioned floaters require no additional support to stay in position during drilling.

To move most land rigs, crewmembers must disassemble many of its components. Disassembly is required so the parts can be transported to the next location and then reassembled. For safety, rigging up usually takes place only during daylight hours. Even with lighting after dark, there is too much heavy equipment to move safely during rig-up.

On most land rigs during rigging up, the rig parts are put back together so the rig can drill a hole. It involves unloading and hooking up the rig engines, the mud tanks and pumps, and other equipment on the site. One of the last steps, and one of the more dramatic, is raising the mast from horizontal—the position in which it was transported—to the vertical drilling position. The first rig component positioned by the crew is the rig’s substructure, which is the base, or foundation.

SUBSTRUCTURES

A substructure is the framework located directly over the hole; it is the foundation of the rig. The bottom of the substructure rests on level ground. The crew places a work platform on top of the substructure called the rig floor. The substructure raises the rig floor to approximately 10 to 40 feet (3 to 12 metres) above the ground. Elevating the rig floor provides room under the rig for special high-pressure valves and a blowout preventer (BOP) stack that the crew connects to the top of the well’s casing. The exact height of a substructure depends on the space needed for this equipment. A cellar also provides more space for the equipment.
The main function of a rotary rig is to drill a hole in the ground, or to make hole. Making hole with a rotary rig requires qualified personnel and a large amount of equipment. There are four main categories of equipment systems used in making hole: power, hoisting, rotating, and circulating.

POWER SYSTEM
Every rig needs a source of power to run the hoisting, circulating, and rotating equipment. In the early days of drilling, steam engines powered most rigs. In the 1860s, Colonel Drake powered his rig with a wood-fired steamboat engine. Until the 1940s and 50s, steam engines drove almost every rig (fig. 95).

Steam is a tremendous power source. For example, steam catapults are used today on modern aircraft carriers to launch aircraft. The major problem with using steam power on drilling rigs was that the boilers were heavy and difficult to move. Also, the steam lines to the steam engines were heavy and withstood high pressures and temperatures. Steam power also required large volumes of water and fuel.

Figure 95. In the foreground is a coal-fired boiler that made steam to power the cable-tool rig in the background.
Normal drilling operations include drilling the hole and adding a new joint of pipe as the hole deepens. It also involves tripping the drill string out the hole to put on a new bit and then running it back to the bottom (making a round trip). Other key steps include running and cementing the large-diameter steel casing used to seal selected intervals of the hole.

DRILLING THE SURFACE HOLE

Engineers create a well plan and a wellbore architecture for every well before it is drilled. A typical wellbore architectural diagram for an onshore well is shown in figure 160. The wellbore diagram shows the hole and casing sizes needed to drill the well to its desired depth.

Figure 160. Typical wellbore architecture
Formation evaluation is the process used by operators to determine if rock layers contain hydrocarbons. Formation evaluation can determine if sufficient quantities of hydrocarbons are present and if the rock has enough permeability to allow a commercial completion. The techniques addressed in this chapter are the examination of cuttings and drilling mud, well logging, drill stem testing, and coring.

EXAMINING CUTTINGS AND DRILLING MUD

One of the oldest formation evaluation techniques is to simply look at the cuttings and the drilling mud returning from the bottom of the hole (fig. 200). A geologist or trained technician who examines the returning drilling mud and cuttings is called a mud logger.

The rock type can be identified from the cuttings. This is important because reservoirs typically fall into broad categories by rock type. For example, reservoir rocks are often sandstone and limestone, which develop the correct combination of porosity and permeability needed to contain hydrocarbons and allow them to flow. A rough idea of the porosity of a rock can be determined by viewing cuttings under a microscope. If a rock contains oil, trace amounts of oil will coat the cuttings even after they have been circulated in drilling fluid and brought to the surface.

Oil is a polarizing compound. It will have a fluorescent shine when viewed in a black light box. The oil stain on cuttings can be confirmed by flushing the oil off the cuttings with a solvent. The streaming solvent will also fluoresce under the black light. In this way, an oil stain can be differentiated from other rock mineral that might also fluoresce. Using this method to determine the presence of oil does not work if an oil-based mud is used as a drilling fluid.

Figure 200. A handful of cuttings made by the bit
Once the formation evaluation is done, the operator must decide if the well should be completed as a producing oil or gas well. If the well does not contain hydrocarbons, or not enough to pay for the completion, the well will be **plugged and abandoned (P&A)**.

PLUGGING AND ABANDONING A WELL

To P&A a well, the drilling rig pumps several cement plugs through the drill pipe. The cement plugs are used to isolate and seal unprofitable hydrocarbon zones from nonhydrocarbon-bearing zones and to seal freshwater zones from saltwater-bearing zones. The intervals between cement plugs are left full of drilling mud. At this time, it might be possible to cut off and recover some of the intermediate casing string (if one is present) for use in other wells. The surface casing string is always left in place and sealed at the bottom and top by either cement plugs or a combination of mechanical and cement plugs. The surface casing will be cut off below the ground level or mud line and a *cap* placed on the stub. If the well is on land, the well site will be environmentally restored after the drilling rig has been moved off the location.

COMPLETING A PRODUCING WELL

The drilling rig is used to run and cement production casing as described previously. The blowout preventers are removed and a production wellhead is attached to the top of the casing. The production wellhead seals the tops of the various casing strings in the well, provides a place to suspend and seal *production tubing* as needed, and provides the valves that control flow out of the well. Figure 209 shows a typical land wellhead or *Christmas tree*.

Figure 209. This collection of valves and fittings is a Christmas tree.
There are several special operations used in oilwell drilling: directional drilling, fishing, and well control.

DIRECTIONAL DRILLING

No well is ever perfectly vertical. Even wells meant to be drilled vertically will wander a few degrees from vertical and move in different directions. Routine measurements are taken during drilling to determine if a well is deviating from vertical by more than the allowed amount (normally less than 5 degrees). If so, careful drilling practices, such as changing the placement of stabilizers in the BHA or adjusting the **rotary speed** or weight on bit, will bring the well back within the tolerances normally allowed for vertical wells.

Directional drilling is used when a well is intentionally deviated to reach a **bottomhole location (BHL)** that is different from the **surface location (SL)**. Directional drilling is done for many reasons. The BHL might be under an obstruction such as a building or lake where rigging up over the required BHL is not possible. It might be necessary to drill several wells from a fixed place, such as an offshore platform or an onshore drilling island (fig. 215), to different bottomhole locations.

Part of an existing well might become blocked with lost drilling tools that are unrecoverable, or a well might have been drilled into an unproductive part of the reservoir. It is possible to set a plug in the lower part of the well and deviate or **kick off**, the well to a new BHL. Some reservoirs are more efficiently produced by wells drilled at a very high angle. These wells are known as **horizontal wells** because the inclination angle from vertical reaches 90 degrees or more.

Older directional drilling methods placed inclined wedges, called **whipstocks**, in the well to force the bit to move in the desired direction. In soft sediments, it is possible to place a large bit nozzle or jet in the desired direction and simply erode the well’s starting path. Although time consuming, these methods are still used at times.

The two faster and often more reliable methods of directional drilling are:

- **Slide drilling** with a motor
- Drilling with a **rotary steerable assembly**

Figure 215. Several directional wells tap an offshore reservoir.
Safety training is part of everyday life for all hands on a drilling rig. There are safety meetings at the beginning of every tour and before each new part of a job. Outside training, such as well control schools and helicopter safety training for offshore crews, is also required for drilling personnel. The equipment used to drill a well is technical and complex, and those who run the equipment must be well trained.

The International Association of Drilling Contractors (IADC) keeps a list of detailed statistics on accident rates in the drilling industry. The annual statistics can be viewed at IADC’s Web site (www.iadc.org). One statistic is the total number of any type of accident that occurs for every one million man-hours worked. This number has declined slightly from 2002–2007 at an average of 11.16 accidents per one million man-hours worked. A normal number of hours one person might work on a drilling rig is about 3,100 man-hours in one year. So, a five-person crew will work roughly 15,500 man-hours in one year. Using the average accident rate shown above, the number of accidents that might be estimated to occur in one year in the five-person crew is 0.18 or less than one. This calculation suggests the average drilling crewmember is a safe worker.

The total number of man-hours actually worked in the worldwide drilling industry is enormous and increases as more rigs are added to the world fleet. Table 3 shows the annual man-hours worked and the total accident frequency rate from the IADC database. Although safety can always be improved, these statistics suggest the industry is becoming safer because the accident rate has decreased with the increasing work time.

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Man-Hours</th>
<th>Accident Frequency</th>
<th>Total Accidents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>346,335,455</td>
<td>10.24</td>
<td>4,572</td>
</tr>
<tr>
<td>2006</td>
<td>418,954,216</td>
<td>10.85</td>
<td>4,547</td>
</tr>
<tr>
<td>2005</td>
<td>369,693,317</td>
<td>11.72</td>
<td>4,332</td>
</tr>
<tr>
<td>2004</td>
<td>336,122,663</td>
<td>11.29</td>
<td>3,794</td>
</tr>
<tr>
<td>2003</td>
<td>301,959,960</td>
<td>11.16</td>
<td>3,369</td>
</tr>
<tr>
<td>2002</td>
<td>281,350,992</td>
<td>11.72</td>
<td>3,297</td>
</tr>
</tbody>
</table>

Source: IADC
Drilling has developed into a specialized and technologically advanced business. The size of the equipment is enormous. The technical challenges to overcome as wells become deeper and are drilled in increasingly hostile environments are equally enormous. The technology of the most advanced drilling rig is computer-controlled and can be monitored from any office in the world. The guidance systems used in directional drilling rival those found on modern jet aircraft or spacecraft.

The energy business is the largest business in the world. This will continue because the standard of living in most countries is now tied to the ability to find and use energy efficiently. Well drilling continues to be an important part of the efficient use of energy, regardless of whether the well is producing hydrocarbons or water, or permanently disposing wastes by injecting them into deep layers in the earth.

The drilling industry must have people who are trained, motivated, and, most importantly, interested in the business, the science, and the art of drilling.
accident statistics, 189
acetylene gas, 164
acidizing, 177
air hoists, 103
alternating current (AC) electricity, 98
American Petroleum Institute (API), 115
anchor points, 159
Anglo-Persian Oil Company, 13
annular preventer, 184
annular space, 126
annulus, 158
anticlinal traps, 62
API kelly, 115
Arctic sites, 82
Arctic submersibles, 24, 26–27
Arctic transport ships, 56
area drilling superintendent, 51
artificial lift hardware, 174
assistant drillers, 44
assistant rig superintendent, 44
automatic catheads, 102
automatic pipe racker, 152
backup tongs, 141
Baku, Azerbaijan, 7–8
barge control operators, 53
barge engineers, 53
barge masters, 53
barium sulfate(barite), 127
barrel, 10
bedrock, 9
beds, 60
bent housing, 180
Bissell, George, 8
bits
 about, 4–5
 diamond, 125
 drag, 122, 125
 matrix of, 125
 milling, 123
 polycrystalline diamond compact (PDC), 125
 roller cone, 122, 123–124
bit sub, 136
Black City, 7
blind rams, 184
blocks and drilling line, 104, 105, 108
A PRIMER OF OILWELL DRILLING

bloomie line, 128
blowout preventers (BOPs), 34, 159, 184
blowout preventers (BOPs) stack, 85
blowouts, 183, 184, 186
boilers, early day, 10
boreholes, 20
bottle-type submersibles, 25
bottomhole assembly (BHA), 120, 136
bottomhole location (BHL), 179
bottom plug, 158
bottom-supported rigs, 23
bottom-supported MODUs, 24
box-on-box substructure, 86
BP Thunder Horse rig, 54
brake bands, 5
breakout cathead, 104
breaking out pipe, 48
breakout tongs, 141
break tour, 92
British Petroleum, 13
Btus, 13
buck up (tighten), 143
bulk tanks, 133
bullwheel, 15
bumps, 159
bushing, 110-111
butane (C₄H₁₀), 56

cable-tool drillers, 11
cable-tool drilling, 15–16
applications for, 16
cable-tool rigs, 11
caisson, 26
California, 10
cased formations, 11
casing crews, 43, 154
casing pipe, 9
casing string, 162
catheads, 101, 102–103
catlines, 102
catshafts, 101
catwalk, 110
caving in, 9
cellars, 77
cementing casing, 43
cementing company, 43, 158
cementing head, 158
centralizers, 158
centrifuge, 132
characteristics of reservoir rocks, 58–59
choke manifold, 186
Christmas tree, 173
circulating equipment, 128–134
circulating system
 circulating equipment, 128–134
drilling fluid, 126–128
clay, 11, 16, 127
correlation of, 38
coal vs. fuel oil, 10, 13
coiled tubing, 175
combination traps, 64
companies
 drilling contractors, 39
 drilling contracts, 39–40
 operating companies, 38–39
 service and supply companies, 40, 42–46
 company representative, 51
 completing a producing well, 173–174
clean up, 101
confirmation wells, 69
connections, 121
core barrel, 170
coring, 170–172
crane operators, 52
crew safety, 50
crown block, 47
crude oil
 about, 6
 oil characteristics, 55, 57
 origin of, 60
 producers of, 38
cutters, 122
cuttings. See also fluid circulation; shale shakers
 in early days, 11, 16
 examination of, 163–172
treatment of, 74, 76, 130–131, 190
darcy, 59
Darcy, Henry, 59
daywork contracts, 40
deadline anchor, 104, 108
degasser, 132
density, 11
density log, 165
derrickman, 45–47, 49, 128, 133–134, 151, 160, 184
derrick raising, 89–91
derricks
 about, 2
 early day, 12, 15
 hoisting system, 109–110
 mast and derrick heights, 90–91
 standard, 89
desanders, 131
desilters, 131
development wells, 69
diamond bits, 125
direct current electricity, 98
directional drilling, 179–181
 rotary steerable assemblies, 181
 slide drilling with a motor, 180
directional holes, 118–119
doghouse, 91
dolomite, 59
doubles (pipeline), 89
downhole blowouts, 183
downhole motors, 18, 110, 118–119
drag bits, 122, 125
Drake, Edwin L., 9, 93
Drake Well, 9–10
drawworks, 88, 101–102
drawworks brake, 5
drawworks drum, 5
dressing off (activity), 182
drill ahead, 5
drill collars, 120
driller, 9
driller and assistant, 45
driller's controls, 45
drilling companies, 39
drilling contractors, 39
drilling contracts, 39–40
drilling crews, 44
drilling crew workshifts, 50
drilling engineer, 128
drilling fluid, 11, 20, 126–128
drilling line, 88
drilling mud, 12, 20
drilling operations, 135–162
 cementing, 158–159
 drilling ahead, 162
 running a surface casing, 154–158
 surface hole drilling, 135–147
 tripping in, 160–161
 tripping out with a kelly system, 148–151
 tripping out with a pipe racker, 152–154
 tripping out with a top-drive system, 152
drilling rate, 164
drilling rigs, 1
drill pipe, 4
drillships, 30, 33–36
drill site
 equipment moving, 82–84
 site preparation, 71–72, 73–81
drill stem testing, 168
drill stem testing (DST), 168
drill string, 5, 16, 120–122
 drive pipe, 81
drums, 5
dynamic positioning operator, 34
dynamic positioning systems, 34
earthen pits, 73–76
electrical power transmission, 97–99
electric logs, 165
electric rig, 99
electric signals, 180
electro-magnetic (EM) signals, 180
elevator, 108
emergency medical technicians (EMTs), 52
environment
 concerns regarding, 189–190
 cuttings and, 130
 flaring and, 128
 mud impacts on, 127
 ocean, 39
 safeguards for, 73
 sensitive areas, 72
 specialists in, 72
 well site restoration, 173
equipment moving to drill site, 82–84
 land rigs, 82
 offshore rigs, 84
ethane (C\(_3\)H\(_6\)), 56
eplorationists, 71
eploration wells, 69

fastline, 106
faults, 60
fault traps, 62
fingerboard, 151
fish, 181
fishermen, 181
fishing, 181–182
fishing jobs, 168
flapper, 156
flared gas, 128
float collara, 156
floaters, 33
floating units
 drill ships, 33–36
 semisubmersibles, 30–31
floes, 26
floorhands (rotary helpers/roughnecks), 44, 48–49
flow diverter, 136
fluid circulation, 19–20
footage rate contracts, 40
forging bit teeth, 123
formation, 10
formation evaluation
 coring, 170–172
 defined, 163
 drill stem testing, 168
 examining cuttings and drilling mud, 163–172
 well logging, 165–167
formation fluids, 20
foundation traps, 61
4-D seismic surveys, 68
fracturing, 177
friction catheads, 102
fuel oil vs. coal, 13
future of drilling, 191

gamma ray log, 165
gas
 about, 1
 natural gas, 6, 55
 origins and accumulation of, 60–61
 propane (C\(_2\)H\(_4\)), 57
 in rocks, 164
gas characteristics
 liquefied natural gas (LNG), 56
 liquefied petroleum gas (LPG), 56
 natural gas, 55
 natural gas liquids (NGLs), 57
gas condensate, 57
gasoline, 57
gas seeps, 13
geologic forces, 60
geophones, 68
geophysicists, 68
Geronimo, 47
gooseneck, 116
grapples, 181
gravel packing, 178
guide shoe, 156
gushers, 12
heave compressors, 35
heavy lift vessels, 30
hexagonal kelly, 114
Higgins, Patillo, 11
history of drilling, 7–13
 California, 10
 Drake Well, 9–10
 Lucas Well, 11–12
 Spindletop well, 11–12, 20, 64–65
hoisting system, 100–110
 about, 100
 blocks and drilling line, 104, 105, 108
 catheads, 102–103
 drawworks, 101–102
 masts and derricks, 109–110
horizontal wells, 179
horsepower, 15
hot wire testing, 164
hydraulic fracturing, 177
hydraulic jars, 181
hydraulic motors, 18
hydrocarbons, 55
hydrochloric acid (HCL), 177
hydrocyclones, 131
hydrofluoric acid (HFL), 177
hydrogas. See liquefied petroleum gas (LPG)
hydrogen sulfide, 55, 57
hydrophones, 68

independent companies, 38
infill wells, 69
inland barges, 27
intermediate casing, 162
International Association of Drilling Contractors (IADC), 40, 189
Iron Roughneck (commercial breakout machine), 147
island barge rigs, 27

jackups, 21, 24–26, 28–29, 92
jetted wastes, 74
joints, 4
joint setback, 153
junk, 181
junk mills, 182

kelly. See also rotating systems
about, 15–16
in drilling operation, 148–151
hexagonal, 114
limits with, 79
and rotary table, 48, 110, 114–115
square, 114
storage of, 77
kelly drive bushing, 110–113
kelly is drilled down (condition), 139
kelly spinner, 142
kerogen, 60
kick off, 179, 184

lag testing, 164
land contractors, 39
land rigs, 22
equipment moving to drill site, 82
leases, 38
limestone, 58
liners, 176
liquefied natural gas (LNG), 56
liquefied petroleum gas (LPG), 55, 56
log, 40
logging while drilling (LWD) tools, 167
Lucas, Anthony, 11
Lucas Well, 11–12

made up pipe, 79
major companies, 38
make a connection (activity), 139
make hole (activity), 93
makeup catheads, 104
make up pipe, 48
makeup tongs, 144
making hole, 5
marine crews, 52
marine risers, 34, 159
master bushing, 110
master bushing and kelly drive bushing, 111–113
mast load ratings, 91
masts, 2
master and derrick heights, 90–91
raising, 89–91
matrix of bits, 125
measurement while drilling (MWD), 180
mechanical catheads, 102
mechanical power transmission, 97
mechanical rigs, 94
methane (CH₃), 55
metreage contracts, 40
milling bits, 123
mineral rights, 38
mobile offshore rigs, 23–36
mobile offshore rigs (MODUs)
about, 23–24
artic submersibles, 26–27
bottle-type submersibles, 25
bottom supported MODUs, 24
floating units, 30–31
island barge rigs, 27
jackups, 28
posted-barge submersibles, 24
submersible MODUs, 24
monkeyboard, 46, 151
most hoisting system, 109–110
mouseholes, 79
mud
about, 11
conditioned mud, 20
cuttings and drilling mud examination, 163–172
drilling mud, 12, 20
oil-base, 127
mud cleaning, 133
mud engineer, 47
mud log, 164
mud logger, 163
mud logging company, 40
mud motors, 118
mud pits, 184
mud tanks, 85
mud weight, 126
mule shoe, 181

natural gas, 6, 55
natural gas liquids (NGLs), 57
neutron log, 165
night toolpushers, 44
nippling BOPs, 159

off-bottom weight, 139
office personnel, 54
offshore drilling rigs, 2
offshore installation manager (OIM), 51
offshore personnel, 51–54
offshore rigging up activity, 92
offshore rigs, 84
oil, 1
-characteristics of, 55–57
-origin and accumulation of, 60–61
-in rocks, 163
oil and gas reservoirs, 58–68
-characteristics of reservoir rocks, 58–59
oil-base mud, 127
oilwell drilling, early, 16
Oil Creek, 14
on-bottom weight, 139
open-hole completion, 176
operating companies, 38–39
operators, 38
origins and accumulation about, 60
-anticlinal traps, 62
-fault traps, 62
-finding petroleum traps, 65–68
-foundation traps, 61
-other traps, 64–65
-structural traps, 61
-origin and accumulation of oil and gas, 60–61
-outpost wells, 69
-overshot, 181
-packers, 168, 174
-people, 44–54
-area drilling superintendent, 51
-company representative, 51
-crew safety, 50
derrickman, 46–47, 49
driller and assistant, 45
drilling crews, 44
drilling crew workshifts, 50
-floorhands (rotaryhelpers/roughnecks), 48–49
-office personnel, 54
-offshore personnel, 51–54
-rig superintendent and assistant, 44
-perforating, 176–177
-perforating gun, 176–177
-perforations, 176
-permafrost, 73
-permeable rocks, 59
-personal protective gear (PPE), 3, 50
-petrochemical feedstock, 57
-petroleum era, 10
-petroleum geology, 65
-petroleum traps discovery, 65–68
-piercement salt dome, 64
-pile driver, 81
-pins, 112
-pipe rams, 184
-pipe tally, 136
-plastic material, 65
-platform, 21
-plugging and abandoning wells (P&A), 173
-plug stops, 158
-polycrystalline diamond compact (PDC) bits, 125
-pontoons, 30
-porosity, 58
-porous rock, 58
-posted-barge submersibles, 24

Index

power rigs, 94
power swivel, 117
power system
 about, 93–99
 electrical power transmission, 97–99
 mechanical power transmission, 97
prime movers, 95
production, 10
production casing, 162
production tubing, 173, 174–175
production wellhead, 35
propane (C₃H₈), 56
proppants, 177
pulleys, 106
pull line, 141
pumps, 19

quadruples (pipeline), 89

racked back stand, 150
rate of penetration (ROP), 123
rathole rig, 78
ratholes, 77–78
recycling, 76
refined hydrocarbon, 57
remotely operated vehicle (ROV), 35
repeat formation tester (RFT), 168
reserve pits, 74
reservoir stimulating, 177
reservoir tapping, 1
reservoir treating, 177
rig components, 93–99
 circulating system, 126–134
 hoisting system, 100–110
 power system, 93–99
 rotating systems, 110–126
rig floor, 4
rigged-down status, 82
rigged-up status, 78
rigged-up status, 82
rigging up activity, 85–92
 additional equipment, 91–92
 mast or derrick raising, 89–91
 offshore, 92
 substructures, 85–88

rig manager, 3, 44
rig safety and environmental concerns, 189–190
rig superintendent, 3
rig superintendent and assistant, 44
rig supervisors, 44
rocks
 gas in, 164
 oil in, 163
roller cone bits, 122, 123–124
rotary drilling rig, 11, 16–20
 fluid circulation, 19–20
 rotating systems, 18–19
rotary drilling rigs, types of
 land rigs, 22
 mobile offshore rigs, 23–36
rotary helpers, 44, 48
rotary speed, 179
rotary steerable assemblies, 179, 181
rotary table, 18
rotary-table systems, 110, 152
rotating components, 97
rotating head, 128
rotating systems, 18–19, 110–126
 bits, 122
 downhole motors, 118–119
 drag bits, 125
 drill string, 120–122
 kelly, 114–115
 master bushing and kelly drive
 bushing, 111–113
 roller cone bits, 123–124
 rotary-table systems, 110
 swivel, 125–124
 top drives, 115–118
 turntables, 111
 weight on bits and rotating speeds, 126
rotors, 118
roughnecks, 44
round trip, 135
roustabouts, 52
royalties, 39
run in activity, 89
running quicksand, 11
run pipe, 111

safety equipment, 47
safety training frequency, 189
salt, 65
salt domes, 65
sand reel, 16
sandstone, 58
SCR house, 98
sediment, 57
seismic signals, 68
seismic surveys, 68
seismology, 68
self-propelled barges, 27
semisubmersibles, 30–31
Seneca Oil Company, 9
service and supply companies, 40, 42–46
shakers, 131
shale, 65
shale diapirs, 65
shale pits, 74
shale shakers, 128
shaped charges, 176
shear rams, 184
sheaves, 106
shut in well, 136
sidewall coring, 170
silicon controlled rectification (SCR) rigs, 94
singles (pipeline), 89
sinker bar, 15
site preparation, 73–81
cellars, 77
conductor holes, 80–81
earthen pits, 73–76
mouseholes, 79
ratholes, 77–78
surface preparation, 73
site selection, 71–72
skidding of rigs, 21
skid the rig step, 82
slack off, 5
slide drilling with a motor, 179, 180
slingshot substructure, 86
stirrup, 158
Smith, William A., 9
soft elevating-substructure, 86
sonic logs, 165
sour crude, 57
sour gas, 55
spears, 182
special operations, 179–188
directional drilling, 179–181
fishing, 181–182
well control, 183–188
Spindletop well, 11–12, 20, 64–65
spool, 88
spudded wells, 11
square kelly, 114
stabbing the drill string, 117, 156
standard derricks, 89
standpipe, 130
stators, 118
steering tools, 180
stem, 115
step-out wells, 69
structural traps, 61
submersible MODUs, 24
types of, 24
subsea blowout preventers (BOPs), 52, 186
subsea engineers, 52
subsea equipment supervisors, 52
substructures, 4, 85–88
subsurface safety valve (SSSV), 175
sulfides, 57
supply reel, 104
surface blowout, 183
surface casing, 136
surface hole, 136
surface location (SL), 179
surface preparation, 73
swamp barges, 27
swampers, 91
sweet crude, 57
swivel, 110, 115–117
swivel stem, 116
tapered bowl, 112
tectonic plates, 60
tensile forces, 121
tensioners, 35
threads, 121
thrusters, 32
thumpers, 68
Tinkerbell line, 47
Titusville, PA, 14
tongs, 48
tons, 2
tool joint, 108
toolpush, 3
toolpushers, 3, 44
top drives, 18, 117–118
advantages of, 118
top-drive systems, 110
top drive system vs. rotary-table system, 152
top plugs, 159
topside, 92
torque, 99
total depth (TD), 162
tours, 49
Townsend, James M., 9
transmission lines, 99
traps, 60, 64–65
traveling blocks, 100
trim, 54
triples (pipeline), 89
tripping in, 46
tripping out, 46
trips, 108
truncated layers, 62
turnkey basis contracts, 40
turntables, 18, 111

vacuum degasser, 132
value moment, 50
V-door, 110
vugs, 59

waiting on cement (WOC) condition, 159
walking bean, 15
wall cake, 12
water wells, 75
weight indicator, 139
weight on bits and rotating speeds, 126
wellbore, 111
well completion, 136, 173–178
 completing a producing well, 173–174
 perforating, 176–177
 plugging and abandoning wells, 173
 production tubing, 174–175
 well testing and treating, 177–178
well control, 183–188
wellhead equipment, 128
well logging, 165–167
well logging company, 42
wells, 1
 well site, 9
well-sorted rock grains, 58
well testing and treating
 acidizing, 177
 fracturing, 177
 gravel packing, 178
well types, 69
whipstocks, 179
white gas, 57
whole coring, 170
wildcatters, 65
wild cat wells, 65
wireline, 166
work shifts, 50
To obtain additional training materials, contact:

PETEX
THE UNIVERSITY OF TEXAS AT AUSTIN
PETROLEUM EXTENSION SERVICE
1 University Station, R8100
Austin, TX 78712-1100
Telephone: 512-471-5940
or 800-687-4132
FAX: 512-471-9410
or 800-687-7839
E-mail: petex@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex

To obtain information about training courses, contact:

PETEX
HOUSTON TRAINING CENTER
THE UNIVERSITY OF TEXAS
4702 North Sam Houston Parkway West, Suite 800
Houston, TX 77086
Telephone: 281-397-2440
or 800-687-7052
FAX: 281-397-2441
E-mail: plach@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex