Contents

Preface ... xi
Acknowledgments .. xiii
Introduction ... 1

1. Tank Measurement .. 3
 Introduction ... 3
 Preliminary Tasks ... 7
 Measuring Tapes .. 8
 Measuring the First Ring ... 10
 Calibrating the Working Tape ... 13
 Measuring Subsequent Rings ... 14
 Measuring Shell Height ... 16
 Measuring Gauging Height ... 16
 Measuring Effective Inside Tank Height .. 17
 Measuring Temperature and Gravity ... 18
 Frequency of Strapping ... 18

2. Gauging Petroleum and Petroleum Product Heights in Stationary Tanks 19
 Introduction ... 19
 Innage Tape-and-Bob Procedure ... 20
 Outage Tape-and-Bob Procedure ... 22
 Modified Outage Procedure ... 25
 Common Practices .. 25
 Gauge Pipes ... 27
 Floating Roof Tanks .. 28
 Gauging Pressure Tanks ... 32
 Gauging Settled S&W ... 34
 Conclusion ... 36

3. Measuring the Temperature, Density, and Suspended S&W Content of Liquids in Tanks ... 37
 Introduction .. 37
 Measuring the Temperature of a Liquid .. 38
 Measuring the Density of a Liquid ... 47
 Measuring the Suspended S&W Content ... 49
 Calculating Net Volume ... 53
 Conclusion .. 56
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Recommended Procedures for Manual Sampling of Tanks</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Tap Sampling</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Manual Sampling of Pipelines</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Handling the Sample</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Manual Sampling Equipment</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
<td>69</td>
</tr>
<tr>
<td>5.</td>
<td>Automatic Sampling of Petroleum and Petroleum Products</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Automatic Sampling System</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Mixing and Withdrawing Samples</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
<td>80</td>
</tr>
<tr>
<td>6.</td>
<td>An Introduction to LACT Systems</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>LACT System Requirements</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>LACT Unit Operation</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
<td>90</td>
</tr>
<tr>
<td>7.</td>
<td>Meters and Meter Proving</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Displacement Meters</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Turbine Meters</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Basics of Meter Proving</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Requirements for Proving</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Proving Meters with an Open-Tank Prover</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>Proving Meters with Pipe Provers</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Proving Schedules</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
<td>116</td>
</tr>
<tr>
<td>8.</td>
<td>Orifice Meter Installations</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Behavior of Gas Molecules</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Orifice Meter Installations</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>How an Orifice Meter Installation Works</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>The Primary Element</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>The Secondary Element</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>Calculation of Gas Flow</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
<td>147</td>
</tr>
<tr>
<td>Appendix</td>
<td>Pre-1992 Gas-Flow Formulas</td>
<td>149</td>
</tr>
<tr>
<td>Glossary</td>
<td></td>
<td>155</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>167</td>
</tr>
</tbody>
</table>
CHAPTER 1

Tank Measurement

INTRODUCTION

Oil and oil products are often stored in large stationary tanks. Crude oil is stored in tanks near producing wells, at tank farms along the route to the refinery, and at the refinery itself. Oil products are stored in tanks in many areas, from the refinery to the petrochemical plant to the wholesale distributor. These liquids are stored for various reasons, but no matter what the reason, whenever they are kept in tanks, the amount stored must be accounted for and therefore must be measured precisely.

One way to measure the volume of a stored liquid is to determine the height of the liquid in the tank and then to refer to a capacity table computed specifically for that tank. This capacity table (also sometimes referred to as a tank table, a strapping table, or a gauge table) tells you the gross volume of liquid contained in a particular tank at any given level. For example, in table 1.1 you can see that the height of the liquid is listed in one-inch increments. Opposite each height is the volume in barrels. Thus, if the liquid height in this tank is 25 feet, 6 inches, it holds 35,429.93 barrels of liquid.

If the liquid height includes a fraction of an inch, you consult the end of the table for the number of barrels for each fraction of liquid height. For example, if the liquid height is 25 feet, 6¼ inches, you look at the end of the table and find that for every quarter of an inch you add 29.16 barrels to the amount listed in the rest of the table. Thus, in this example, 25 feet, 6¼ inches equals 35,459.09 barrels of liquid.

A capacity table like the one shown in table 1.1 is developed from specific measurements taken from the storage tank. At various times during its life a storage tank is carefully measured by a professional independent contractor to obtain certain dimensions, including, among others, the depth of the tank (both inside and outside), the circumference of each ring of the tank and the height of the liquid, if any, in the tank. These measurements are then forwarded to the department that computes capacity tables. Measuring a tank so that its capacity can be computed is sometimes referred to as tank strapping. It is also frequently called tank calibration.

1To determine the net volume of liquid in a tank, and thus to determine tank liquid volume accurately, you must also know the height of the liquid, the temperature and gravity of the liquid, and the sediment and water content.
CHAPTER 2

Gauging Petroleum and Petroleum Product Heights in Stationary Tanks

INTRODUCTION

Measuring oil and oil products stored in stationary tanks is a fairly straightforward process. First you strap, or measure, the capacity of the tank. Next, you develop capacity tables that tell you the gross volume, in barrels, for any level of liquid. Finally, you gauge (i.e., measure) the height of the liquid from the bottom of the tank to the surface of the liquid. You gauge the height of the liquid to take inventory or to measure the amount of liquid transferred any time liquid enters or leaves the tank. If liquid is moving into or out of the tank, you gauge the height before the liquid enters or leaves and after the liquid enters or leaves the tank. The difference between the two measurements is the gross volume transferred.

In order to determine as closely as possible how many barrels of liquid are in the tank, you gauge the height of the liquid to the nearest eighth of an inch. On crude oil lease tanks holding one thousand barrels or less, you gauge to the nearest quarter inch. Before you measure the liquid height, however, you need to make sure that the liquid has been in the tank long enough for the surface to be at rest and for any foam to have subsided. If you are gauging crude oil, you should also wait long enough for any entrained air to bubble out or water to settle out of the oil. And, if you are measuring liquid products and the tank has a mixer, you must be sure the mixer is shut off.

Once these conditions are met, you can use one of several methods to determine the liquid height in a stationary tank with a fixed roof: the innage tape-and-bob procedure; the outage (sometimes called ullage) tape-and-bob procedure; or a modified outage or ullage procedure. Innage refers to the liquid height in the tank. Outage refers to the space between the liquid and a reference point at the top of the tank.
CHAPTER 3
Measuring the Temperature, Density, and Suspended S&W Content of Liquids in Tanks

INTRODUCTION

To determine the net volume of liquid in a tank, you must know not only the height of the liquid and the settled S&W, but also the liquid’s temperature, its density, and the amount of S&W suspended in it. All three of these factors directly affect the volume of liquid in a tank.

The temperature is important because petroleum liquids expand—take up more volume—when warm, and contract—take up less volume—when cold. How much they expand and contract depends not only on their temperature but also on their density. For example, crude oil does not expand or contract as much as kerosene, given the same deviation in temperature, because crude oil is denser than kerosene. To measure how much liquid a tank contains, then, you must measure the temperature and the density of the liquid.

You must also determine the amount of suspended S&W in the liquid. Suspended S&W is extraneous matter that remains trapped in the tank oil. It can be seen only after being physically or chemically separated from the oil. You must subtract the amount of suspended S&W from the liquid volume just as you do the amount of settled S&W. Producers and carriers agree to limit the total amount of suspended S&W to a certain percentage of the liquid because S&W can cause corrosion and problems in processing and transporting; may violate federal, state, or municipal regulations; and may not be acceptable to the pipeline transporting the liquid. If tests reveal a higher percentage than the one agreed on, the suspended S&W must be removed before the transfer takes place. Once you have measured the temperature, the density of the liquid in the tank, and the suspended S&W content, you can determine the net volume.
CHAPTER 4

Manual Sampling of Petroleum and Petroleum Products

INTRODUCTION

To the inexperienced, obtaining a sample of oil or product from a storage tank would not seem that difficult. Samples are relatively small, so why not just lower a suitable container into a tank, fill it, raise it to the surface and use the contents for whatever tests are needed?

If the liquids were anything but oil or oil products, this method might work. But oil and oil products are combinations of hydrocarbons and other substances. Storage tanks rarely contain homogeneous quantities of these liquids from top to bottom. The hydrocarbons and other materials tend to gravitate by weight into different strata throughout the tank. Just grabbing a sample from the top will not give you a good cross section of all of the vessel’s contents—and obtaining a good cross section, or representative sample, is absolutely necessary. You use samples not only to test for API gravity and suspended sediment and water, but also to determine certain other physical and chemical characteristics that must be known before a custody transfer can take place or a price can be determined. For example, you use a sample to test the sulfur content of diesel fuels, the octane level of certain fuels, or to determine whether the product meets the buyer’s or the government’s specifications. If you do not have a sample that accurately represents the entire contents of the tank, then all tests on that sample will give you erroneous information.

Automatic sampling of pipeline systems is preferred. Automatic systems are discussed in detail in chapter 5 of this book and in API MPMS, chapter 8, section 2, “Automatic Sampling of Petroleum and Petroleum Products.” In general, an automatic system provides a constant, systematic withdrawal of small amounts of crude oil or product as the liquid leaves the tank and enters the pipeline. Automatic systems are not always available, however. API MPMS, chapter 8, section 1, “Manual Sampling of Petroleum and Petroleum Products,” describes the conditions under which you can obtain an acceptable manual sample from an oil or product tank: if (1) the material you’re sampling contains a heavy component, like sediment and water, which clearly separates from the oil or product; (2) the tank contains either a weir or a swing suction at the bottom of the tank to prevent the shipment of the heavy component; and (3) you take the sample so that none of the heavy component is included. The standard also details the procedures used to obtain that sample. These procedures can be used for a variety of vessels, including rail cars, pipelines, marine vessels, trucks, and lease tanks.
CHAPTER 5

Automatic Sampling of Petroleum and Petroleum Products

INTRODUCTION

Millions of barrels of petroleum and petroleum products are produced and transported every day. Each fluid must be sampled in order to determine price and to test for such characteristics as the octane rating (gasolines), the sulfur content (diesel fuels), gravity (crudes), and S&W content (oil or products). The best way to obtain a representative sample of oil or product is to use an automatic sampling system.

Automatic sampling involves a constant, systematic withdrawal of small amounts from a liquid stream flowing through a pipe. If the automatic sampling system is set up correctly and maintained properly, it will give you a more representative sample of the liquid than you would get if you manually sampled the liquid. The automatic system eliminates much of the risk of human error, can be used virtually anywhere (since it is installed on pipelines), provides a constant withdrawal from any liquid stream, and reduces the personnel time required to obtain a sample. In short, it is highly efficient and accurate.
CHAPTER 6
An Introduction to LACT Systems

INTRODUCTION

Manually measuring the millions of barrels of oil that are transferred from lease to pipeline each day could consume a lot of time and money. A more efficient method is to use a LACT—lease automatic custody transfer—unit. This unit measures the quantity and quality of oil (that is, it performs all the functions described in chapters 2–4) without a gauger or other personnel present. It saves the lease operator and the producing company time and money while providing a systematic means of monitoring all oil transferred from lease to carrier.

To transfer oil from lease to carrier, a LACT unit must perform three basic functions: (1) it must accurately measure the quantity of oil transferred; (2) it must sample the oil being transferred so that it can be tested to determine quality; and (3) it must monitor the S&W content to prevent the transfer of “bad oil.” Bad oil contains an unacceptable amount of S&W—an extraneous commodity that is worthless and that corrodes the pipe. Keeping the amount of S&W to a minimum is necessary. What constitutes an acceptable amount is usually established by the pipeline or other carrier and is typically a little less than 1% of the total volume transferred.
CHAPTER 7
Meters and Meter Proving

INTRODUCTION

A meter is a device that measures the volume of a fluid flowing through it. Many types are used in a variety of locations, from the lease to truck-loading racks, to measure oil or oil products, but the two most common types used to measure liquids are the displacement meter and the turbine meter. All meters, however, regardless of type or location, measure and register how much oil or product has been bought, sold, or transferred to another’s custody. And they must measure this liquid volume accurately.

Even the best meter, no matter how well designed, installed, and maintained, does not always measure exactly the amount flowing through it. Each has a particular margin of error, whether the result of design limitations or of wear and tear.

Determining the meter’s accuracy, or proving the meter, is a very important job in the oil industry. Each meter must be checked periodically, or proved, to determine its margin of error, that is, the difference between the amount registered and the true volume flowing through it. The registered volume can be corrected by manually adjusting, or calibrating, the meter, or by determining a numerical meter factor that is used in a mathematical formula to convert the meter’s registered volume to volume indicated by the prover.

In this chapter the displacement meter and the turbine meter will be described as well as two of the most commonly used proving procedures—proving a meter with an open-tank prover, and proving a meter with a pipe prover.
CHAPTER 8

Orifice Meter Installations

INTRODUCTION

Measuring petroleum liquids, as described in chapter 7, is a straightforward process, but, because of the nature of natural gas, a direct measure of its volume is very difficult. Natural gas is a mixture of hydrocarbon gases with very low density and viscosity; as a result, a volume of gas expands and contracts easily, depending on the pressure and temperature. Natural gas distributes itself uniformly throughout a container and is also invisible, odorless, and lighter than air. (The odor we associate with natural gas is a sulfur compound called mercaptan. It is added to natural gas so that any leaks can be detected.) In other words, it is a devil of a substance to contain, much less to measure, since its density and volume change dramatically with any change in pressure and temperature. There is no gallon, or barrel, for that matter, of natural gas. Natural gas must, by its nature, be contained and measured in a very different way from liquids.

BEHAVIOR OF GAS MOLECULES

Gas molecules are in constant motion. They travel in a straight line until they collide with another molecule or a confining wall. They bounce off each other much the way billiard balls do when they strike. The pressure exerted by a gas depends on how hard and how often its molecules collide with the walls of the chamber in which it is confined. The fewer the gas molecules in a chamber, the fewer the molecular collisions, and thus the lower the exerted pressure. The greater the number of gas molecules in a confined space, the greater the number of collisions, and thus, the greater the pressure exerted by the gas.
Index

A
AGA-3 122, 145, 149
centrifugal force 49, 51
centrifuge 51
tubes 50, 52–53
capping factor 152
orifice meter. See orifice meter
cart
check valve 90
closing gauge 27
computer operations
basic field 143
computers
field 143, 144
field-mounted gas-flow 143
flow 143
conditioning equipment 72–75
critical zone 29. See also
floating-roof tanks
Cp 98, 114
Cp 98, 114
dielectric
constant 85
differential pressure. See pressure:
differential range 153
displacement meter. See meter:
displacement
drip pots 133
dual-chamber fittings 128
dual-chamber fittings
flanges 126
dual-chamber fittings 128
flanged fittings 126
flow
gas 143
calculation of 144–147
measurement
electronic 143
monitor 88
rate 113
mass 145, 146–147
volume 145, 146–147
turbulent 73

AGA-3 122, 145, 149
air, effect of, on proving 103
all-level sample 59
allowable 89
American Society of Testing and
Materials 47
anchor
line 17
point 11. See also measuring
first ring
API gravity 40, 41–43, 47, 48,
99, 114
effect of, on meter factor 102
API standards 2
for liquids 2
for natural gas 2
2550 29
2555 29
ASTM 47
automatic sampling 71–80, 86
advantages of 80
conditioning equipment in 72
in-line 74
probe and extractor 73
preferred location of 74–75
sample controller 75–76
sample-loop 74
sampling receiver 76–79
system 72–80, 86

B
bad oil 81, 82–85, 90
beakers, metal
advantages of 60
bob. See tape and bob
bottles, weighted
advantages of 60
bottom sample 62–63
builder’s data plate 7
core thief. See thief
correction factor 13–14, 98–99, 108
for API gravity 113–114
for gross meter volume 114
for liquid pressure 98–99
for liquid temperature 98–99
for steel pressure 98–99
for steel temperature 98–99
cp 98–99, 108, 114
cp 98–99, 108, 114
custody transfer 1, 29
custody transfer 1, 29
datum plate 16, 17, 21. See also
core thief
determining 48–49
dealer
Datum plate 16, 17, 21.
See also
demulsifiers 49
density 2, 48
measuring 37, 47–49
materials needed 47
of tank contents 37
measuring 47–49
procedures for
determining 48–49
debuat
Datum plate 16, 17, 21.
See also
demulsifiers 49
density 2, 48
measuring 37, 47–49
materials needed 47
of tank contents 37
demulsifiers 49
density 2, 48

C
C‘ (orifice flow constant) 149–154
calibrating working tape 13–14
calibration report 8
calibrator, cyclic 109
capacity table 3, 4, 7, 8, 16, 17, 18,
19, 21
calibrating working tape 13–14
calibration report 8
calibrator, cyclic 109
capacity table 3, 4, 7, 8, 16, 17, 18,
19, 21
G

gas flow
calculation of 144–147
data 143
formulas 149–154
for L-10 charts 152–153
for linear charts 149
for percentage charts 154
pre-1992 149–154
gas molecules 117–119
gauge
closing 27
glass
direct-reading 33
tank 33
opening 27
path 18
pipes 27–28
point 22
striking point 16, 20
table 3
for floating-roof tank 30

gauger's tape 16

gauging
before custody transfer 26
for inventory 27
height 17, 21, 23, 24, 25, 28, 32
pressure tanks 32–33
settled S&W 34–36

gravity
API. See API gravity
measuring 18
of tank contents 18
specific 47
gross volume 53, 56

H

hydrometer 47, 49

I

innage 19
bob 20, 25
gauge 21–23
measurement 25
tape 24
tape-and-bob procedure 19–22, 34
internal

gauging equipment, in pressurized tanks 32–33
leak detector 102
tape-and-reel assembly 32–33
inventory, gauging for 27

L

L-10 charts 138–139, 152–153
LACT unit 81–90

advantages of 81
alarm 85
automatic sampling system 86
automatic temperature compensator 88
back-pressure valve 90
check valve 90
deaerator 86
flow monitor 88
functions of 81
meter 87, 88
automatic temperature compensator 88
flow monitor 88
pulse monitor 88
set-stop counter 89
operation 83–90
prover connectors 89–90
pulse monitor 88
pump 84, 88
requirements 82
S&W probe 84–85
set-stop counter 89
storage facilities 83
strainer 84, 86
leaks
meter 102
prover 106
lease automatic custody transfer unit.
See LACT unit
linear charts 136, 149
lines 69
liquid
cut 20, 22, 24, 31
head stress 18
height in tanks 3, 17, 18, 19, 22, 23, 34–36
level in floating-roof tanks 30

Manual of Petroleum Measurement Standards (MPMS) 6
chap. 3 33
chap. 4 116
chap. 6 84
chap. 7 38, 40, 41
chap. 8 47, 57, 58, 66, 73, 77, 73
chap. 9 47
chap. 10 49–50, 51
chap. 12 108, 114
chap. 14 122, 124, 131, 145, 146, 150
manual sampling 57–69
all-level sample 59
bottom sample 62–63
composite spot sample 60–62
conditions for 57
equipment 68–69
container stoppers 69
cords 69
lines 69
sample containers 68–69
of pipelines 66
order of samples in 60
recommended procedures for 59–64
running sample 60
safety precautions during 62
summary of procedures for 58
marking chalk 10. See also measuring first ring
mass flow rate. See flow rate measurement
density 37, 47–49
effective inside tank height 17
first ring 10
gauging height 16
gravity 18
natural gas 117–147
oil and oil products in stationary tanks 19–36
rings other than first 14–15
second ring 15
shell height 16
tapes 8–9
colored 26
gauger's 16
inspection of 25
product-finding 26
standard 8, 9, 13
tension of 13
working 8, 9, 13
temperature 17, 37–56
top ring 14–15

meniscus 48

meter
accuracy 91
charts. See orifice meter charts
definition of 91
displacement 92–94, 100
adjustment of 95
compared with turbine meter 92
lobed impeller 93
factor 90, 91, 95, 99, 100, 102, 108, 109, 114
flow monitor 88
inferential. See meter: turbine
leaks 102
margin of error 91, 94, 95, 97, 100
master 108
INDEX

orifice 117–148. See also orifice meter installations
proving 91–116
basics 95–99
pulse monitor 88
set-stop counter 89
temperature-compensated 99, 113, 114
true volume of 91
turbine 94
velocity. See meter: turbine
wear 93, 94, 100, 102

N
National Institute of Standards and Technology (NIST) 8, 20, 100
natural gas 3, 117
behavior of 117
effect of characteristics of, on measurement 122–123
flowing temperature of 123
measurement of 117–147
pressure 2
relative density of 150
specific gravity of 123
storage of 119
transportation of 119
net volume 3, 56
calculating 53–55
of liquid in a tank determining 37–56
NIST. See National Institute of Standards and Technology

O
oil, bad 81, 85
opening gauge 27
open-tank prover 95, 96, 97, 104–109
orifice flow constant. See C
orifice meter charts 119, 134–139
accuracy of 140–143
clocks 141
direct-reading 136
handling 141
1, 140 138, 152–153
linear 136, 149
pens 141, 142, 143
percentage 139, 154
scanner 139
square-root 138
zero points 139, 141
orifice meter installations 117–147
functioning of 122–123
primary element 120, 124–132
secondary element 120, 132–144
installation 133–134
orifice plate 122, 124
beveled 125
effect of size of, on measurement 123, 124
effect of thickness of, on measurement 124
fitting requirements 130–132
fittings 125–129
dual-chamber 128
flanged 126
seals 128
single-chamber 126–127
single-chamber, with gearing 126–127
size 124
storage 132
tap holes 128
thickness 124
outage 19
bob 23
measurement 23, 24
tape 24
tape and bob 25
tape-and-bob procedure 16, 22–25, 28–31, 32, 33
modified 25, 32, 33
modified 25, 32, 33

P
paste, water-finding 34
percentage charts 139, 154
pipelines, manual sampling of 66
practical mass equation 145
preheater 49
pressure
base factor 146
differential 120, 122, 123, 124, 128, 132, 134, 135, 138, 139, 145, 149
extension 150
natural gas 2
standard 150
static 120, 123, 134, 138, 139, 144, 149, 153
primary element 120, 124–132
seals 128
probe 73–75
S&W 84, 85
product height, gauging 19–36
prover 89
open-tank 95, 96, 97, 104–109
capacity of 105
dry-bottom 104
effect of air or vapor on 103
preparations for proving with 106–107
wet-bottom 104
pipe 95, 97, 109–115
bidirectional U-type 97, 109
effect of air or vapor on 103
preparations for proving with 112–113
proving with 109–115, 113–115
portable to fill 105
proving
basics 95–99
meter 91–116
report 100, 107–109, 111
requirements for 100–103
schedules 116
with open-tank prover 104–109
with pipe prover 109–115
pulse monitor 88
receiver, sampling 76–79
reference height 16, 21
point 21, 22, 24, 25, 34
relative density. See density: relative
repeatability 100, 101–103, 108–109, 111, 113
roof weight
for floating-roof tank 29–30

S
safety measures 27
sample
all-level 59
bottom 62–63
composite spot 60–62
containers 68–69
controller 75–76
failure alarm 76
flow-proportional 75
time-proportional 75, 76
frequency
in marine operations 76, 77
handling 67
mixing and withdrawing 80
probe 86–87
proving 73, 74
quality, protecting 78
receiver 76–79
running 60
samples
conditioned. See samples: representative
handling 67
mixing and withdrawing 80
representative 69, 71, 72
sampling
automatic 57, 66, 71–80, 86
advantages of 71
system 72–79, 86
manual. See manual sampling
tap 64–65
uses of 57
scanner charts 139
seals 128
secondary element 120, 132–144
installation 133
effect of vibration on 134
sediment and water 3, 26, 29,
34–36, 81
determining 52–53
gauging, in crude oil 34–36
probe 84–85, 87
settled 34–36, 37, 62–63
measuring 37, 49–51
set-stop counter 89
shell height 16, 17
sight glass, tank 33
single-chamber fittings 126–127
with gearing 126–127
slippage 93, 103, 113
solvents 49–50, 68
specific gravity 47
square-root charts 138–139
standard
conditions 146
pressure 150
tape 8–9
temperature 8
static pressure. See pressure: static
storage
of oil and oil products 3
strapping
frequency of 18
pole 10, 14. See also measuring
first ring
table 3
stress factor
of liquid in tank 18
surface tension 48
of working tape 13, 14

tables
capacity 3, 16, 17, 18, 19, 21
gauge 3
strapping 3
tank 3
as-built prints of 7
bottoms 22
builder’s data plate of 7
calibration 3
capacity 7
measuring 18, 19
effective inside height of 17
floating-roof 28–31
gauging
common practices in 25
safety measures during 27
sampling 27
horizontal cylindrical
sampling in 62
measurement 3–18
pressure 32–33, 43, 44
stationary 3, 19–36
strapping 3–18, 19
frequency of 18
measuring first ring 10
optical reference line method 6
preliminary tasks 7
table 3
upright cylindrical 6, 62
fixed-roof 6
sampling in 62
tap
floating, system 65
holes 128, 133
permanent 64
sampling 64–65
with floating tap systems 65
with permanent taps 64–65
valves 142
tape
and bob 16, 20–25
calibrating 20
clamp 12
colored 26
path 11
working 9, 13–14
temperature
ambient 18
compensator 108
effect of, on meter factor 102
flowing 145, 149
of gas 150
measuring 18, 37–46
of tank contents 18, 37
measuring 37–46
standard, for volume
measurement 88
tension gauge 12
test liquid 104
thermohydrometer 47, 48
thermometers 38–46
calibration of 39
equilibrium of 40, 42
fixed 46
angle-stem 46
dial-type 46
immersion times of 40
U
ullage tape-and-bob procedure. See
outage tape-and-bob procedure
upright cylindrical tank. See tank:
upright cylindrical
U-tube 122
V
valves
back-pressure 90
block-and-bleed 89, 90
check 90
diverter 110, 111, 113, 114
prover connector 89
tap 142
vapor, effect of, on proving 103
vena contracta 124
volume
converting to standard 98–99,
108–109
flow rate. See flow: rate
gross 53, 56
indicated 111
net 53–55, 56
observed 98
registered 91, 94, 95–99
true 91, 94, 95–99
W
water-finding paste 34
water gauge bob 34, 35
wear, meter 93, 94, 102
working tape 9, 13–14
Z
zero point 21, 23
To obtain additional training materials, contact:

PETEX
THE UNIVERSITY OF TEXAS AT AUSTIN
PETROLEUM EXTENSION SERVICE
1 University Station, R8100
Austin, TX 78712-1100
Telephone: 512-471-5940
or 800-687-4132
FAX: 512-471-9410
or 800-687-7839
E-mail: petex@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex

To obtain information about training courses, contact:

PETEX
HOUSTON TRAINING CENTER
THE UNIVERSITY OF TEXAS
2700 W.W. Thorne Blvd.
Houston, TX 77073
Telephone: 281-443-7144
or 800-667-7052
FAX: 281-443-8722
E-mail: petexhtc@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex