Reciprocating Gas Compressors

OIL AND GAS PRODUCTION
OIL AND GAS PRODUCTON SERIES

Analysis for Well Completion
 Artificial Lift
 Beam Pumping
 Cased-Hole Logging
 Coring and Core Analysis
 Corrosion Control
 Improved Recovery
 Open-Hole Logging
 Reciprocating Gas Compressors
 Well Cementing
 Wireline Operations
Table of Contents

Preface .. v
Acknowledgments ... vii
How to Use This Manual .. 1

1. System Design and Components ... 1
 Objectives .. 1
 Compressors .. 2
 Prime Movers, or Drivers .. 4
 Connection between Driver and Compressor .. 9
 Gas Piping ... 12
 Selection Considerations .. 12
 Self-Test .. 17

2. Safety and Auxiliary Equipment ... 22
 Objectives .. 22
 Automatic Safety Shutdown Equipment ... 23
 Auxiliary Equipment ... 26
 Self-Test ... 37

3. Design of Components .. 41
 Objectives .. 41
 Cylinder Design ... 42
 Piston Design .. 45
 Pulsation Control ... 46
 Valve Design .. 48
 Self-Test ... 51

4. Calculations .. 55
 Objectives .. 55
 Compression Cycle .. 56
 Piston Displacement .. 56
 Compression Ratio ... 57
 Clearance Volume .. 57
 Volumetric Efficiency ... 58
 Horsepower Requirements ... 60
 Cylinder Capacities .. 65
 Rod Loads .. 65
 Discharge Temperature .. 65
 Sample Problems ... 67
 Self-Test ... 70
5. Operation .. 75
 Objectives ... 75
 Compressor Unit Capacity 76
 Efficient Use of Horsepower 82
 Self-Test ... 84

6. Maintenance ... 87
 Objectives ... 87
 Maintenance Programs and Repair Indicators 88
 Bearing Failure .. 89
 Compressor Valve Failure 91
 Engine-Compressor Analyzer 94
 Operating and Maintenance Records 96
 Routine Operating Procedures 96
 Safety Precautions .. 97
 Self-Test ... 98

Glossary .. 101
Self-Test Answer Key .. 105
Acknowledgments

Reciprocating Gas Compressors is based on material prepared by R. C. Nisbet, Exxon Company, U.S.A., for presentation at the School of Production Technology. Following the untimely death of Mr. Nisbet, F. G. Culberson, also of Exxon, assumed the teaching duties and ably assisted O. J. Erlund, contract writer for Petroleum Extension Service (PETEX), in completing the draft manuscript.

The series of study units covering subjects taught at the production school is sponsored by the school's industry advisory committee, a committee established by the Committee on Vocational Training, American Petroleum Institute (API), Production Department. A special subcommittee was active in reviewing the material and making suggestions for its improvement. Active on the subcommittee at the time of this manual's preparation were Marvin Boyd, Sun Texas Oil Company; Buford Neely, Shell Oil Company; and W. L. Merrill, Gulf Exploration and Production Company.

Sincere appreciation is extended to the following people and their companies for their help:
For reviewing the lesson:
Glenn A. Taylor and Nathan Blington of Exxon, U.S.A.; Robert Meixner of Ingersoll-Rand; Jerry Taylor of Cooper Energy Services; Carl E. Schroeder of Conoco, Inc.; Arthur J. Johnson of E. J. Mitchell Company; and Tracy Little of Energy Dynamics, Inc.
For providing illustrations and information:
Greg Martin of Cooper Energy Services; Martin Stern of Ingersoll-Rand; Jerry Giddens and Sam Roden of Gerhardt's, Inc.; A. C. Koterba of Detroit Diesel Allison Division, General Motors Corporation; and Ron Cannon of the American Petroleum Institute.
For allowing PETEX to photograph their compressor facilities:
A special thanks goes to Henry Downing of United Gas Pipe Line Company for reviewing the lesson and for acting as technical consultant during the revision of the lesson.
How to Use This Manual

The format of this manual includes a set of specific objectives for each section; at the end of the section is a competency self-test. To get maximum benefit from the manual, read the specific objectives carefully before studying the material in each section. As you study the material in the section, take notes, using the objectives as a guide to the most important parts.

When you feel that you have mastered the objectives, begin the self-test. Since it is a self-test, you decide whether you should refer back to the material to answer the questions by determining how important that section is to your work. If you feel that you need to be very competent in an area, do not refer back until you have finished the test. In this way, using the scoring points given at the beginning of the test, you can determine your percentage of competency. Score the test by using the corresponding key provided at the end of this manual.
1

System Design and Components

OBJECTIVES

Upon completion of this section, the student will be able to:

1. Describe the function and uses of a reciprocating gas compressor.

2. List the major parts of a reciprocating gas compressor.

3. Define *prime mover*, or *driver*, as applied to a compressor.

4. Compare a two-stroke cycle engine with a four-stroke cycle engine.

5. List three ways a prime mover and a compressor may be connected, and give one advantage for each type of connection.

6. List six considerations necessary when selecting a compressor unit.
2

Safety and Auxiliary Equipment

OBJECTIVES

Upon completion of this section, the student will be able to:

1. Explain why shutdown devices are needed for compressor engines.

2. List nine situations that may cause an emergency shutdown of a compressor.

3. Name two methods of shutdown generally used in shutdown devices.

4. List the different kinds of auxiliary equipment and describe the function of each.
3
Design of Components

OBJECTIVES

Upon completion of this section, the student will be able to:

1. List the factors involved in the choice of a cylinder design and in the choice of material for construction of a cylinder.

2. Compare the advantages of the valve-in-body cylinder design and the valve-in-head cylinder design.

3. List five types of pistons used in compressors.

4. Describe the equipment commonly used to suppress pulsations.

5. Describe the function of a compressor valve.

6. Define the force that operates compressor valves.

7. Relate the sequence of events revealed by a piston velocity indicator card.

8. List the two primary objectives in designing a valve.
4

Calculations

OBJECTIVES

Upon completion of this section, the student will be able to:

1. Determine piston displacement.

2. Calculate the compression ratio for a stage of compression.

3. Find the ratio of specific heats for a gas.

4. Compute the volumetric efficiency of a cylinder

5. Calculate the horsepower required to compress a given volume of gas under stated conditions.

6. Determine the capacity of a cylinder compressor.

7. Calculate compressor rod loads.

8. Predict discharge temperatures.
5

Operation

OBJECTIVES

Upon completion of this section, the student will be able to:

1. Describe the seven factors that affect compressor unit capacity and developed horsepower.

2. Explain how the permanent clearance and the temporary clearance of a cylinder may be changed.

3. Describe the six methods of taking advantage of field changes to achieve more efficient utilization of existing compressor horsepower.

4. List four ways in which high plant inlet pressures can be obtained.
6 Maintenance

OBJECTIVES

Upon completion of this section, the student will be able to:

1. Differentiate between the types of maintenance and rate their relative values.

2. Identify the indicators [symptoms] of beginning failure of engine parts.

3. Identify the symptoms indicating types of bearing failures.

4. Identify the causes of power valve failures.

5. Identify the causes of abnormal mechanical action.

6. Describe the checks that should be made in a routine inspection.

7. Describe the safety precautions that should be followed when repairing compressor units.
To obtain additional training materials, contact:

PETEX
THE UNIVERSITY OF TEXAS AT AUSTIN
PETROLEUM EXTENSION SERVICE
J.J. Pickle Research Campus
10100 Burnet Road, Bldg. 2
Austin, TX 78758
Telephone: 512-471-5940
or 800-687-4132
FAX: 512-471-9410
or 800-687-7839
E-mail: petex@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex

To obtain information about training courses, contact:

PETEX
LEARNING AND ASSESSMENT CENTER
THE UNIVERSITY OF TEXAS
4702 N. Sam Houston Parkway West, Suite 800
Houston, TX 77086
Telephone: 281-397-2440
or 800-687-7052
FAX: 281-397-2441
E-mail: plach@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex