ROTARY DRILLING SERIES

Unit I: The Rig and Its Maintenance
 Lesson 1: The Rotary Rig and Its Components
 Lesson 2: The Bit
 Lesson 3: Drill String and Drill Collars
 Lesson 4: Rotary, Kelly, Swivel, Tongs, and Top Drive
 Lesson 5: The Blocks and Drilling Line
 Lesson 6: The Drawworks and the Compound
 Lesson 7: Drilling Fluids, Mud Pumps, and Conditioning Equipment
 Lesson 8: Diesel Engines and Electric Power
 Lesson 9: The Auxiliaries
 Lesson 10: Safety on the Rig

Unit II: Normal Drilling Operations
 Lesson 1: Making Hole
 Lesson 2: Drilling Fluids
 Lesson 3: Drilling a Straight Hole
 Lesson 4: Casing and Cementing
 Lesson 5: Testing and Completing

Unit III: Nonroutine Operations
 Lesson 1: Controlled Directional Drilling
 Lesson 2: Open-Hole Fishing
 Lesson 3: Blowout Prevention

Unit IV: Man Management and Rig Management

Unit V: Offshore Technology
 Lesson 1: Wind, Waves, and Weather
 Lesson 2: Spread Mooring Systems
 Lesson 3: Buoyancy, Stability, and Trim
 Lesson 4: Jacking Systems and Rig Moving Procedures
 Lesson 5: Diving and Equipment
 Lesson 6: Vessel Inspection and Maintenance
 Lesson 7: Helicopter Safety
 Lesson 8: Orientation for Offshore Crane Operations
 Lesson 9: Life Offshore
 Lesson 10: Marine Riser Systems and Subsea Blowout Preventers
Figures v
Foreword vii
Preface ix
Acknowledgments xi
About the Author xiii
Units of Measurement xiv
Introduction 1
To Summarize 5
The Power System 7
Prime Movers 8
Drives 9
Mechanical 9
Diesel-Electric 11
Silicon-Controlled Rectifiers 14
The Power System Layout 14
To Summarize 15
The Hoisting System 17
The Substructure 18
The Derrick or Mast 18
Derrick Load Ratings 18
Derrick Height 19
The Drawworks 19
The Catshaft and Catheads 20
The Brake System 24
The Transmission System 25
The Blocks and Drilling Line 25
The Crown Block 26
The Traveling Block 27
The Drilling Line 29
Maintenance 31
To Summarize 32
The Rotating System 33
The Swivel 35
The Top Drive 36
The Kelly 38
Kelly Cocks 40
The Rotary Table 43
The Drill Stem 44
Drill Pipe 45
Tool Joints 46
Drill Collars 46
Bits 47
Roller Cone Bits 47
Fixed Cutter Bits 48
Hole Diameter 49
To Summarize 50
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Circulating System</td>
<td>51</td>
</tr>
<tr>
<td>Drilling Fluids</td>
<td>53</td>
</tr>
<tr>
<td>Liquid Muds</td>
<td>54</td>
</tr>
<tr>
<td>Air, Gas, and Foam</td>
<td>55</td>
</tr>
<tr>
<td>Mud Tanks</td>
<td>55</td>
</tr>
<tr>
<td>Mud Pumps</td>
<td>56</td>
</tr>
<tr>
<td>The Mud Cycle</td>
<td>57</td>
</tr>
<tr>
<td>Desilters and Desanders</td>
<td>60</td>
</tr>
<tr>
<td>Degassers</td>
<td>61</td>
</tr>
<tr>
<td>Mud Control and Hydraulics</td>
<td>61</td>
</tr>
<tr>
<td>To Summarize</td>
<td>62</td>
</tr>
<tr>
<td>Well-Control Equipment</td>
<td>63</td>
</tr>
<tr>
<td>Blowout Preventers</td>
<td>65</td>
</tr>
<tr>
<td>Annular Preventers</td>
<td>66</td>
</tr>
<tr>
<td>Ram Preventers</td>
<td>67</td>
</tr>
<tr>
<td>Accumulators</td>
<td>69</td>
</tr>
<tr>
<td>Chokes</td>
<td>71</td>
</tr>
<tr>
<td>Choke Manifolds</td>
<td>72</td>
</tr>
<tr>
<td>Circulating a Kick</td>
<td>73</td>
</tr>
<tr>
<td>Mud-Gas Separators</td>
<td>74</td>
</tr>
<tr>
<td>To Summarize</td>
<td>75</td>
</tr>
<tr>
<td>Auxiliary Equipment</td>
<td>77</td>
</tr>
<tr>
<td>Electric Generators</td>
<td>78</td>
</tr>
<tr>
<td>Air Compressors</td>
<td>79</td>
</tr>
<tr>
<td>Mud Treatment</td>
<td>80</td>
</tr>
<tr>
<td>Degassers</td>
<td>80</td>
</tr>
<tr>
<td>Desilters and Desanders</td>
<td>81</td>
</tr>
<tr>
<td>Drilling Instruments</td>
<td>82</td>
</tr>
<tr>
<td>Other Facilities</td>
<td>83</td>
</tr>
<tr>
<td>To Summarize</td>
<td>84</td>
</tr>
<tr>
<td>The Crew</td>
<td>85</td>
</tr>
<tr>
<td>Company Representatives</td>
<td>86</td>
</tr>
<tr>
<td>Toolpushers and Tourpushers</td>
<td>86</td>
</tr>
<tr>
<td>Drillers</td>
<td>87</td>
</tr>
<tr>
<td>Derrickhands</td>
<td>87</td>
</tr>
<tr>
<td>Motorhands and Mechanics</td>
<td>88</td>
</tr>
<tr>
<td>Electricians</td>
<td>88</td>
</tr>
<tr>
<td>Rotary Helpers</td>
<td>89</td>
</tr>
<tr>
<td>Crane Operators and Roustabouts</td>
<td>90</td>
</tr>
<tr>
<td>Work Shifts</td>
<td>90</td>
</tr>
<tr>
<td>To Summarize</td>
<td>92</td>
</tr>
<tr>
<td>Appendix</td>
<td>93</td>
</tr>
<tr>
<td>Glossary</td>
<td>97</td>
</tr>
<tr>
<td>Review Questions</td>
<td>129</td>
</tr>
<tr>
<td>Index</td>
<td>135</td>
</tr>
<tr>
<td>Answers</td>
<td>143</td>
</tr>
</tbody>
</table>
After graduating from Texas Tech University, Mike Marcom started his oilfield career by roughnecking in West Texas. Later, he joined the North Sea Operations Group of Rowan Companies, Inc. At Rowan, he served in the Drilling Division in various capacities including those of Driller, Rig Superintendent, and Rig Manager; he then served as Managing Director of Rowan’s European Operations and as Vice President of Rowan International, Ltd. When he retired as Operations Vice President in 2011, he had held responsibilities throughout the company for over thirty-five years. He currently provides industry-related consulting services.

Mike has been active in many organizations that advance the oil and gas industry. Those organizations include the International Association of Drilling Contractors (IADC), Society of Petroleum Engineers (SPE), American Association of Drilling Engineers (AADE), American Petroleum Institute (API), and Society of Naval Architects and Engineers (SNAME). In addition, he has served on the Executive Committee of the Gulf of Mexico Offshore Operators Committee (OOC), the Gulf of Mexico Area Maritime Security Committee (GOM AMSC), the Executive Committee of the API Committee on Standardization of Equipment and Materials (CSOEM), the National Offshore Safety Advisory Committee, and the API Drilling and Production Operating Standards Committee (DPOS). While active at Rowan, he represented the National Ocean Industries Association (NOIA) on the Oil and Natural Gas Sector Coordinating Council (ONG SCC), contributed to the oil and gas workgroup of the Homeland Security Information Network (HSIN), and chaired the IADC Jack Up Committee.
Throughout the world, two systems of measurement dominate: the English system and the metric system. Today, the United States is one of only a few countries that employ the English system.

The English system uses the pound as the unit of weight, the foot as the unit of length, and the gallon as the unit of capacity. In the English system, for example, 1 foot equals 12 inches, 1 yard equals 36 inches, and 1 mile equals 5,280 feet or 1,760 yards.

The metric system uses the gram as the unit of weight, the metre as the unit of length, and the litre as the unit of capacity. In the metric system, 1 metre equals 10 decimetres, 100 centimetres, or 1,000 millimetres. A kilometre equals 1,000 metres. The metric system, unlike the English system, uses a base of 10; thus, it is easy to convert from one unit to another. To convert from one unit to another in the English system, you must memorize or look up the values.

In the late 1970s, the Eleventh General Conference on Weights and Measures described and adopted the Système International (SI) d’Unités. Conference participants based the SI system on the metric system and designed it as an international standard of measurement.

The Rotary Drilling Series gives both English and SI units. And because the SI system employs the British spelling of many of the terms, the book follows those spelling rules as well. The unit of length, for example, is metre, not meter. (Note, however, that the unit of weight is gram, not gramme.)

To aid U.S. readers in making and understanding the conversion system, we include the table on the next page.
English-Units-to-SI-Units Conversion Factors

<table>
<thead>
<tr>
<th>Quantity or Property</th>
<th>English Units</th>
<th>Multiply English Units By</th>
<th>To Obtain These SI Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length, depth, or height</td>
<td>inches (in.)</td>
<td>25.4</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td></td>
<td>feet (ft)</td>
<td>0.3048</td>
<td>metres (m)</td>
</tr>
<tr>
<td></td>
<td>yards (yd)</td>
<td>0.9144</td>
<td>metres (m)</td>
</tr>
<tr>
<td></td>
<td>miles (mi)</td>
<td>1609.344</td>
<td>metres (m)</td>
</tr>
<tr>
<td></td>
<td>Hole and pipe diameters, bit size</td>
<td>inches (in.)</td>
<td>25.4</td>
</tr>
<tr>
<td></td>
<td>Drilling rate</td>
<td>feet per hour (ft/h)</td>
<td>0.3048</td>
</tr>
<tr>
<td></td>
<td>Weight on bit</td>
<td>pounds (lb)</td>
<td>0.445</td>
</tr>
<tr>
<td>Nozzle size</td>
<td>32nds of an inch</td>
<td>0.8</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td></td>
<td>barrels (bbl)</td>
<td>0.159</td>
<td>cubic metres (m³)</td>
</tr>
<tr>
<td></td>
<td>gallons per stroke (gal/stroke)</td>
<td>0.00379</td>
<td>cubic metres per stroke (m³/stroke)</td>
</tr>
<tr>
<td></td>
<td>ounces (oz)</td>
<td>29.57</td>
<td>millilitres (mL)</td>
</tr>
<tr>
<td>Volume</td>
<td>cubic inches (in.³)</td>
<td>16.387</td>
<td>cubic centimetres (cm³)</td>
</tr>
<tr>
<td></td>
<td>cubic feet (ft³)</td>
<td>28.3169</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>quarts (qt)</td>
<td>0.9464</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>gallons (gal)</td>
<td>3.7854</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>gallons (gal)</td>
<td>0.00379</td>
<td>cubic metres (m³)</td>
</tr>
<tr>
<td></td>
<td>pounds per barrel (lb/bbl)</td>
<td>2.2046</td>
<td>kilogrammes per cubic metre (kg/m³)</td>
</tr>
<tr>
<td></td>
<td>barrels per ton (bbl/tn)</td>
<td>0.117</td>
<td>cubic metres per tonne (m³/t)</td>
</tr>
<tr>
<td>Pump output and flow rate</td>
<td>gallons per minute (gpm)</td>
<td>0.00379</td>
<td>cubic metres per minute (m³/min)</td>
</tr>
<tr>
<td></td>
<td>gallons per hour (gph)</td>
<td>0.00379</td>
<td>cubic metres per hour (m³/h)</td>
</tr>
<tr>
<td></td>
<td>barrels per stroke (bbl/stroke)</td>
<td>0.159</td>
<td>cubic metres per stroke (m³/stroke)</td>
</tr>
<tr>
<td></td>
<td>barrels per minute (bbl/min)</td>
<td>0.159</td>
<td>cubic metres per minute (m³/min)</td>
</tr>
<tr>
<td>Pressure</td>
<td>pounds per square inch (psi)</td>
<td>6.895</td>
<td>kilopascals (kPa)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.006895</td>
<td>megapascals (MPa)</td>
</tr>
<tr>
<td>Temperature</td>
<td>degrees Fahrenheit (°F)</td>
<td>°F - 32</td>
<td>degrees Celsius (°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Mass (weight)</td>
<td>ounces (oz)</td>
<td>28.35</td>
<td>grams (g)</td>
</tr>
<tr>
<td></td>
<td>pounds (lb)</td>
<td>453.59</td>
<td>grams (g)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4536</td>
<td>kilograms (kg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.09072</td>
<td>tonnes (t)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.488</td>
<td>kilogrammes per metre (kg/m)</td>
</tr>
<tr>
<td>Mud weight</td>
<td>pounds per gallon (ppg)</td>
<td>119.82</td>
<td>kilogrammes per cubic metre (kg/m³)</td>
</tr>
<tr>
<td></td>
<td>pounds per cubic foot (lb/ft³)</td>
<td>16.0</td>
<td>kilogrammes per cubic metre (kg/m³)</td>
</tr>
<tr>
<td>Pressure gradient</td>
<td>pounds per square inch per foot (psi/ft)</td>
<td>22.621</td>
<td>kilopascals per metre (kPa/m)</td>
</tr>
<tr>
<td>Funnel viscosity</td>
<td>seconds per quart (s/qt)</td>
<td>1.057</td>
<td>seconds per litre (s/L)</td>
</tr>
<tr>
<td>Yield point</td>
<td>pounds per 100 square feet (lb/100 ft²)</td>
<td>0.48</td>
<td>pascal (Pa)</td>
</tr>
<tr>
<td>Gel strength</td>
<td>pounds per 100 square feet (lb/100 ft²)</td>
<td>0.48</td>
<td>pascal (Pa)</td>
</tr>
<tr>
<td>Filter cake thickness</td>
<td>32nds of an inch</td>
<td>0.8</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td>Power</td>
<td>horsepower (hp)</td>
<td>0.75</td>
<td>kilowatts (kW)</td>
</tr>
<tr>
<td>Area</td>
<td>square inches (in.²)</td>
<td>6.45</td>
<td>square centimetres (cm²)</td>
</tr>
<tr>
<td></td>
<td>square feet (ft²)</td>
<td>0.0929</td>
<td>square metres (m²)</td>
</tr>
<tr>
<td></td>
<td>square yards (yd²)</td>
<td>0.8361</td>
<td>square metres (m²)</td>
</tr>
<tr>
<td></td>
<td>square miles (mi²)</td>
<td>2.59</td>
<td>square kilometres (km²)</td>
</tr>
<tr>
<td></td>
<td>acre (ac)</td>
<td>0.40</td>
<td>hectare (ha)</td>
</tr>
<tr>
<td>Drilling line wear</td>
<td>ton-miles (tn•mi)</td>
<td>14.317</td>
<td>megajoules (MJ)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.459</td>
<td>tonne-kilometres (t•km)</td>
</tr>
<tr>
<td>Torque</td>
<td>foot-pounds (ft•lb)</td>
<td>1.3558</td>
<td>newton metres (N•m)</td>
</tr>
</tbody>
</table>
Introduction

In this chapter:

• The purpose of the rotary rig: drilling a well
• Portability of rotary rigs
• The functions of operators and drilling contractors
• Basics of the rotary drilling process

Oil and gas are normally found far below the surface, so special means of reaching them and bringing them to the surface must be used. Drilling through perhaps thousands of feet of earth, removing the dirt and rock from the hole as it is drilled, keeping the hole from caving in while it is being drilled, finding a particular layer of earth where oil or gas might be trapped, and providing a means of bringing it to the surface require considerable expertise, labor, and equipment. The primary equipment in this process is the rotary drilling rig and its components.

A rotary drilling rig, whether on land or offshore, can be thought of as a factory designed to produce only one product—an oilwell, or hole, as it is called in the business. This hole is a carefully planned path from the surface to a formation that might contain hydrocarbons. A rig differs from other manufacturing facilities, however, in that, once the hole is completed and the oil or gas is flowing to the surface, the rig is no longer needed to continue production. Once a well is drilled, the rig and its components can be disassembled, moved, and reassembled at a new location in order to begin drilling again.
The Power System

In this chapter:

- Power requirements of a rig
- Providing power to the components
- Transmitting power to the components
- Converting AC to DC
- Variability in the layout of a rig’s power system

On nearly every rig, the power required for drilling the well comes from internal-combustion engines that are most often powered by diesel fuel. A rig needs from two to four or even more engines, depending on how deep the well is to be drilled. Big rigs typically have three or four 1,215-horsepower (906-kilowatt) engines with 1,200-kilovolt-ampere (kva) generators that together can generate 4,860 horsepower (3,624 kilowatts).

This horsepower or wattage is transmitted from the engines, or prime movers (the basic source of rig power), to the rig components through one of two types of drive—mechanical and electrical. On a mechanical rig, parts such as chains and pulleys transmit engine power to the components. Electric rigs sometimes require fewer of those types of parts and transmit electric power from the prime movers to electric motors at each component. Most new medium- to deep-capacity rigs are electric because they are easier to rig up and maintain than mechanical rigs are.

The power system uses the prime movers and the drives to produce and transmit power to the hoisting, circulating, and rotating systems. (The drilling systems are discussed in later sections of this book.)

For more information on power systems, see these titles from Unit 1 of the Rotary Series:

- Lesson 6: The Drawworks and the Compound
- Lesson 8: Diesel Engines and Electric Power
The Hoisting System

In this chapter:

• Raising and lowering the drill stem
• Supporting the suspended drill stem
• Moving the drill stem
• Supporting the drill stem and connecting it to the drawworks

During the drilling of a well, the hoisting system lifts the drill stem in and out of the hole. It also lowers the casing into the hole. The hoisting system consists of many pieces:

• The substructure
• The derrick or mast
• The drawworks
• The crown block
• The traveling block and hook
• The drilling line

The substructure supports the derrick, the rotary table, and the full load of the drill stem when the stem is suspended in the hole or standing in the derrick. It also supports the casing string when the casing is being run in the hole. In addition, it raises the rig floor high enough to provide space under the rig for large valves called blowout preventers (discussed in a later section). The rig floor, which rests on top of the substructure, holds the drawworks, the driller’s control panel, the doghouse, and other equipment.

For more information on the hoisting system, see these titles from Unit I of the Rotary Series:

• Lesson 5: The Blocks and Drilling Line
• Lesson 6: The Drawworks and the Compound

The Substructure
The Rotating System

In this chapter:
• Rotating the drill string and bit
• Supporting the drill stem
• Circulating mud
• Cutting rock
• The telescopic shape of wellbores

The rotating system turns the drill string and the bit to drill a hole. The following pieces of rotating equipment make up the rotating system (from top to bottom):
• The swivel or top drive
• The kelly (if used)
• A saver sub
• The rotary table
• The drill pipe
• Tool joints
• Drill collars
• The bit

For more information on the rotating system, see these titles from Unit 1 of the Rotary Series:
• Lesson 2: The Bit
• Lesson 3: Drill String and Drill Collars
• Lesson 4: Rotary, Kelly, Swivel, Tongs, and Top Drive
The Circulating System

In this chapter:

- Cooling the bit, cleaning the hole, and balancing formation pressure in the well
- Moving the mud
- Mixing and storing the mud
- Cutting rock and circulating mud
- Types of drilling fluids

The circulating system circulates drilling fluid to the bit and back to the surface for cleaning and recirculation (fig. 41). For the rotary drilling system to function, fluid must be circulated downward through the drill stem, around the bit, and upward in the annular space between the drill stem and the wall of the hole or the casing (fig. 42). A circulating system uses the following components to circulate, clean, and recirculate drilling fluid:

- Mud pumps
- The rotary hose
- The swivel or top drive
- The drill stem
- The bit
- The mud return line
- Mud tanks
- Compressors, if the circulating system uses air or gas

For more information on the circulating system, see the Rotary Series, Unit I, Lesson 7: Drilling Fluids, Mud Pumps, and Conditioning Equipment.
A blowout is an uncontrolled flow of gas, oil, or other well fluids into the atmosphere or into an underground formation. It can occur when formation pressure exceeds the pressure applied to it by the column of drilling fluid. A blowout endangers the lives of the crew and wastes petroleum; it can also damage the environment and destroy a rig worth millions of dollars. Although relatively rare, a blowout is an awesome sight. Fluid (oil, gas, or salt water) erupts from the well with great force and often ignites into a roaring inferno, especially if it contains gas (fig. 50). The crew uses well-control equipment to prevent blowouts.

Another way the crew prevents these events is by using the right amount of drilling mud of the proper density. Even when the right mud “recipe” is used, however, if the bit drills into a formation with higher-than-expected pressure or if the crew allows the mud level in the hole to drop, the well can kick. During a kick, formation fluid enters the hole and forces some of the drilling mud out.
Auxiliary Equipment

In this chapter:
• Powering the auxiliaries
• Treating used mud
• Monitoring drilling parameters
• Storage facilities, crew accommodations, and telecommunications systems

In addition to the major pieces of equipment that make up a drilling rig, many relatively minor pieces of equipment are necessary. The main systems—for power, hoisting, rotating, circulating, and well-control—all have support equipment that makes it possible for the rig to function. How the rig will be used influences both the number and types of auxiliaries chosen for operations. Variables such as terrain, climate, remoteness from supply centers, and transportation requirements also have an influence on the choice of auxiliaries.

In the offshore environment, drillships and mobile offshore drilling units (MODUs) capable of floating have the drilling rig and auxiliaries so firmly integrated into the structure and function of the unit that it is often difficult to differentiate between the equipment required for drilling operations and the equipment required to operate the unit. For example, the prime movers might be used to generate power for both drilling and operating functions. For this reason, it is normal to refer to one of these purpose-built whole units as a “rig,” even though the rig is technically only constituted of the drilling equipment mounted on the unit.

For more information on auxiliary equipment, see the Rotary Series, Unit I, Lesson 9: The Auxiliaries.
Index

Throughout this index, f indicates a figure on that page.

AC. See alternating current (AC).
accumulators, 69–70, 69f, 75
active pits, 80
adjustable choke, 71, 72, 72f
afternoon tour, 90
agitators (mud tank), 56
air as drilling fluid, 55
air compressors, 79, 84
air hoist, 23, 23f
air pumps, 79
air slips, 79
alternating current (AC), 12, 13f, 14, 78, 79
anchor. See deadline anchor.
annular preventers, 65, 65f, 66, 66f
annular space, 51, 53f, 56, 57
antifreeze, 69
aquifers, 49
assistant driller, 87. See also derrickhands.
attapulgite, 54
automated tongs, 22
automatic catheads, 10f, 22
auxiliary brake, 10f, 24, 24f
auxiliary equipment
air compressors, 79
choosing, 77
degassers, 80
desanders, 81
desilters, 81
drilling instruments, 82, 82f
electric generators, 78–79, 78f
for mud treatment, 80
back pressure, 72, 73. See also pressure.
bail, 28, 28f
barite, 54
bentonite, 54
bits
 circulating system and, 51, 52f, 57
 drill collars and, 46
 in the drilling process, 49
 in the drill stem, 44f
 fixed cutter, 48, 48f
 jet, 47f
 overview of, 47, 50, 62
 roller cone, 47, 47f
 rotating system and, 34f
blind ram blowout preventer, 65, 67f
blind-shear ram blowout preventer, 67, 68f
blocks, 25, 32. See also crown block; traveling block.
blowout, 64f. See also well-control equipment.
 gas-cut muds and, 61, 80
 underbalanced drilling and, 55
 well-control equipment and, 63
blowout preventer (BOP). See also safety; well-control equipment.
 accumulators, 69–70
 air compressors and, 79
 annular, 66, 66f
 in the lower kelly cock, 41
 overview of, 65, 65f, 75
 ram, 65f, 67–68, 67f, 68f
 remote control panels for, 70f
 substructure and, 18
BOP. See blowout preventer (BOP).
borehole. See wellbore.
bottomhole pressure, 55
box, 46, 46f, 47
THE ROTARY RIG AND ITS COMPONENTS

brake system, 24, 24f
breaking out a pipe, 20, 22, 36, 42, 89
breakout cathead, 22
bunkhouse, 83, 84
bus, 79
bushing. See kelly drive bushing; master bushing.
cable. See drilling line.
camp, 83, 84
casing, 25, 49, 50f
casing string, 18
catline, 22
catshaft/catheads, 10f, 19, 20–23, 21f, 22f
cautic barrel, 56
cautic dry ingredients, 55–56
cementing operations, 25, 49, 50f
centrifugal pumps, 52f, 79
chain drive, 9f
change house, 83, 84
choke line, 73
choke manifold, 72–73, 72f, 75
chokes, 71–73, 71f, 72f
circulating fluid. See drilling fluids.
circulating system
components of, 51, 52f
degassers, 60, 60f, 61
desanders, 59f, 60
desilters, 59f, 60
drilling fluids, 53–55, 53f
mud control in, 61
mud cycle, 57–58
mud pump, 56, 56f, 57f
mud tanks, 55–56
power demands of, 14
typical arrangement of, 59f
circulating the kick, 72, 73
days, 48, 54
closing unit, 69, 75
clutch, 9, 79
compacts, 48
compacted, 9, 9f, 10f, 15
compounded engines, 11
compressors, 51, 56
control panels, 11f, 65f, 69, 70f, 71f
crane operators, 90, 92
crewmembers
crane operators and roustabouts, 90
derrickhands, 87
drillers, 87
electricians, 88
facilities for, 83
motorhands and mechanics, 88
overview of, 2, 85–86
rotary helpers, 89, 89f
safety equipment for, 56
toolpushers and tourpushers, 86
work shifts, 90–91
crossover sub, 44f
crown block. See also blocks.
derrick and, 19
lowering or raising the drill stem, 31
overview of, 26, 26f
purpose of, 25
in the rotating system, 34f
stringing up, 29, 30f
cut and run, 68
cuttings, 54, 55, 57, 59
daylight tour, 90
DC. See direct current (DC).
deadline anchor, 30f, 31–32
deep holes, 29
degassers, 59f, 60f, 61, 61f, 62, 80, 84. See also gas.
depth of well, 49–50
derrick. See also mast.
lengths of drill pipe for, 45
in the hoisting system, 18–19
overview of, 18, 32
stringing up, 29
substructure and, 18
derrick floor. See rig floor.
derrickhands, 25, 87, 90, 92. See also assistant driller.
desanders, 59f, 60, 62, 81, 84
desilters, 59f, 60, 62, 81, 84
diamond bits, 48, 48f
dies, 43
diesel-electric drives, 11–12, 11f, 13f
diesel engines, 8, 8f, 10f, 11f, 78, 78f
diesel-oil mud, 54
direct current (DC), 12, 13f, 14, 79
discharge line, 57
doghouse, 18, 83, 84
double-acting two-cylinder (duplex) pumps, 56, 56f
doubles (two-joint stands), 45
drawworks. See also hoist.
 brake system, 24, 24f
catshaft/catheads, 20–23
 lowering or raising the drill stem, 31
 in the hoisting system, 30f
 layout of, 10f, 11f, 14, 15f
 on a mechanical-drive rig, 9, 9f
 operation of, 14
 overview of, 19–20, 19f, 32
 purpose of, 20f
 substructure and, 18
 transmission system, 25
drill collar
 circulating system and, 52f, 57
 in the drill stem, 44f
 overview of, 44, 45f, 46–47, 46f
 rotating system and, 34f
drillers
 circulating a kick, 73
 hired on a rig, 90
 operation of DC motors, 14
 overview of, 87, 87f, 92
drilling. See rotary drilling.
drilling contractor, 2, 14, 85, 86
drilling crew. See crewmembers.
drilling fluids. See also muds.
 circulation of, 51, 53f, 57, 59f
 flow patterns of, 53f
 correct mixture of, 63
 cycle of, 57–59
 indicating a kick, 64
 liquid, 53–55
 mud control and, 61
 under pressure, 36
 purpose of, 2, 3f, 53, 75
treatment of, 54, 59, 80
drilling hook, 27–28, 28f, 30f, 34f
drilling line
 lowering or raising the drill stem, 31
 maintenance of, 31–32
 overview of, 32
 purpose of, 19, 20f, 25
 reeving, 26, 26f
 rotating system and, 34f
 slipping, 31–32
 stringing up, 29–31, 29f, 30f
 wear of, 31
drilling mud. See drilling fluids.
drill pipe
 circulating system and, 52f, 57
 in the drill stem, 44f
 kelly and, 58
 overview of, 45, 45f
 rotating system and, 34f
drill pipe joints, 20
drill pipe safety valve, 41
drillships, 8, 77, 85
drill site, 18
drill stem
 circulating system and, 51
 components of, 34, 34f
 drawworks and, 20f
 height of the derrick and, 19
 monitoring weight of, 82
 overview of, 44, 44f, 50, 62
 process of rotating, 36
 purpose of, 2
 substructure and, 18
drill stem valve, 41
drill string, 20, 35, 50
drives
 diesel-electric, 11–12, 11f, 13f
 mechanical, 9, 9f, 10f
 overview of, 15
drive shaft, 36
drum, 10f, 20, 20f, 30f, 31–32
dry ingredients, 55–56, 80, 81f, 83, 84
dump valves, 52f
duplex pump. See double-acting two-cylinder (duplex) pumps.
eight-hour tour, 90, 91f, 92
electric generators, 11, 11f, 78–79, 78f, 84
electricians, 88, 92
electric rig, 7. See also rig.
electromagnetic auxiliary brake, 24, 24f
elevators, 28, 28f
ingines, 7, 8, 8f. See also prime movers.
environmental issues, 59, 63
evening tour, 90

fastline, 30f, 31
fishing out a drill string, 68
fixed choke, 72
fixed cutter bits, 47, 48, 48f
floor crew, 28
flowline, 57, 62
foam as drilling fluid, 55
formation, 1, 2, 46, 47, 48
formation fluids, 55, 63, 64, 72
formation pressure, 55, 63, 64, 72
fourbles (four-joint stands), 45
friction cathead, 10f
fuel. See also natural gas.
diesel, 7
inlet for, 13f
to run prime movers, 8
storage of, 83, 84

gas. See also degassers, mud-gas separators.
blowout of, 63
bringing to the surface, 1–2
as drilling fluid, 55
in drilling fluid/mud, 61, 80, 82
to run prime movers, 8
finding in remote locations, 90
venting, 74
gas cut muds, 61, 80
gelling, 54

generators, 7, 11, 15, 78–79, 78f
gooseneck, 36
ground anchors for a derrick, 18
guy wires for a derrick, 18

heavy mud. See mud weight.
hoist, 19. See also drawworks.
hoisting system
blocks and drilling line, 25–28
components of, 17
derrick/mast, 18–19
drawworks, 19–25
layout of, 30f
overview of, 17
power demands of, 14
substructure of, 18
hole. See wellbore.
hole deviation, 46
hole diameter, 49–50, 50f
hook. See drilling hook.
horsepower (hp), 7, 8
hp. See horsepower (hp).
hydraulic auxiliary brake, 24
hydraulic fluid, 69
hydrocarbons, 1
instrumentation system, 82, 82f
iron roughnecks, 22

jackknife masts, 18
jet bits, 47, 47f
joints. See tool joints.
kelly
circulating system and, 52f
in the drill stem, 36, 44f
lower kelly cock, 41, 41f
in mud circulation, 57
overview of, 38, 38f, 39f, 50
rotary table, 39f
rotating system and, 34f
upper kelly cock, 34f, 39f, 40, 40f, 44f
kelly cock wrench, 40
kelly drive bushing, 36, 38, 39f, 43f
kelly hose. See rotary hose.
kelly saver sub, 34f, 41, 42, 42f, 44f
kick, 63–64, 72, 73, 80
killing a well, 72

lignite, 54
lignosulfonates, 54
line. See drilling line.
links, 28
liquid muds, 54
load ratings, 18
lower kelly cock, 41, 41f
lower kelly valve, 41
lower upset, 44f

main brake, 24
makeup cathead, 20, 21f
makeup tongs, 20, 21f
making a connection, 54
making up a pipe, 20, 36, 42, 89
manifold, 72–73, 72f
manually adjustable choke, 72
mast, 18–19, 32. See also derrick.
master bushing, 36, 38, 39f, 43f
mechanic, 87, 92
mechanical drives, 9, 9f, 10f
mechanical rig, 7. See also mechanical drives; rig.
mechanics, 88
mobile offshore drilling units (MODUs), 77, 85
MODUs. See mobile offshore drilling units (MODUs).
monkeyboard, 87
morning tour, 90
motorhands, 88, 92
mud active pits, 84
mud control, 61
mud-gas separators, 73f, 75. See also gas.
mud engineer, 80, 86
mud hopper, 52f, 55
mud house, 52f
mud logging, 82
mud-pit level, monitoring, 82
mud pump
 circulating system and, 51, 52f
duplex, 56, 56f
layout of, 11f, 14, 59f
operation of, 14
overview of, 56, 62
triplex, 56, 57f

mud reserve pits, 80, 84
mud return line, 51, 52f, 57, 62
muds, 54, 59, 61, 80. See also drilling fluids.
mud storage, 84
mud tanks/pits, 51, 55–56, 59, 62
mud weight, 54, 55, 60, 72, 80

natural gas, 8, 55. See also fuel.
noise abatement, diesel-electric rigs and, 12
nozzles, 47

offshore drilling
crewmembers of, 85–86
derrick delivery to, 18
drilling pipe for, 45
facilities for, 83
generators on, 79
mechanics on, 87
MODUs, 77
portability of rigs for, 2
preference for diesel-electric rigs, 12
ram preventers, 67–68
rig, 85
top drive, 36

oil, 1–2, 54, 63, 82, 90
oil-based drilling fluid, 54
open hole, annular preventers and, 66, 66f, 67
operator, 2, 86

petroleum, 2, 8, 63
phosphates, 54
pin, 46, 46f, 47
pipe. See drill pipe.
pipe handler, 36
pipe joints. See drill pipe joints.
pipe rack, 18, 45
pipe ram blowout preventer, 65, 67, 67f
pneumatic controls/clutches, 79
polycrystalline diamond compact (PDC) bits, 48, 48f
polymers, 54
positive choke, 72
power system
 drives, 9–12
layout of, 14, 15f
overview of, 7
prime movers, 8
silicon-controlled rectifiers for, 12, 14, 79
pressure. See also back pressure.
in an accumulator, 69
air compressors and, 79
bottomhole, 55
cuttings and, 55
drilling fluids, 36
formation, 63, 64, 72
formation fluids, 49
kicks and, 63, 73
pump, 56
well, 40
prime movers, 7, 8, 9f, 14, 15. See also engines.
production, 1
pulleys, 29. See also sheaves.
pump pressure, 56, 82
quebracho, 54
ram preventers, 65f, 67–68, 67f, 68f
Range 1 drill pipe, 45
Range 2 drill pipe, 45
Range 3 drill pipe, 38, 45
rectifiers, silicon-controlled, 12, 14, 79
reel, supply, 29, 30f, 31
reeving, 26, 26f, 29–31
remote control panels. See control panels.
remote power-adjustable choke, 71
reserve pits, 52f, 80
rig. See also electric rig; mechanical rig.
crewmembers on, 85
layout of, 15f
portability of, 1, 2
power system of, 7–8
purpose of, 1, 3f
seen as a whole, 77
different types of, 4, 7, 9, 11
rig-down, 19
rig floor, 18
rig superintendent. See toolpushers.
rig-up, 7, 12, 19
rock bits. See roller cone bits.
roller cone bits, 47, 47f
rotary drilling, 1, 4, 8, 43, 49, 51
rotary helpers, 20, 89f, 90, 92
rotary hose
 circulating system and, 51, 52f
 location of, 28f, 36, 39f
 in the mud cycle, 57
 overview of, 62
rotary line. See drilling line.
rotary speed, monitoring, 82
rotary table
 arrangement of, 10f, 11f, 14, 39f, 43f
 kelly and, 38
 operation of, 14
 overview of, 43, 50
 substructure and, 18
rotating system
 bits, 47–48, 47f, 48f
 components of, 33–35
 drill collar, 46–47, 46f
 drill pipe, 45, 45f
 drill stem, 35, 44, 44f
 hole diameter, 49–50, 50f
 kelly and, 38–42, 39f
 overview of, 33–35, 50
 rotary table, 39f, 43, 43f
 swivel, 35–36
tool joints, 46, 46f
top drive, 36, 37f
roughneck, 89, 92
roustabouts, 90, 92
safety. See also blowout preventer (BOP).
 blowouts and, 63
 using cathead spools, 23
 with hazardous dry materials, 55–56
 kelly cock wrench, 41
 making up or breaking out a pipe, 22, 36
 noise abatement, 12
sand trap, 52f, 80
saver sub. See kelly saver sub.
SCRs. See silicon-controlled rectifiers (SCRs).
settling pit/tank, 80
shaker tank, 52f, 74, 80
shale, bits for, 48
shale shaker, 52f, 57, 59f, 62, 80
shear ram. See blind-shear ram blowout preventer.

sheaves, 26, 27, 29
silicon-controlled rectifiers (SCRs), 12, 14, 79
silicone, bits for, 48
single-acting three-cylinder (triplex) pumps, 56, 57f
singles (single joints), 45
skidding a rig, 2, 18
slipping the line, 31–32
slips, 43, 43f
sloughing, 49, 53, 54
stabbing the drive shaft (into the drill stem), 36
stack, 65, 65f
standard derrick, 18
standpipe, 52f, 57, 58f
stands of drill pipe, 45
storage, 80, 81f, 83, 84
string-up, 29–31
substructure, 12, 18, 31, 32
suction pit, 52f, 80
supply reel, 29, 30f, 31
swivel
 circulating system and, 51, 52f, 57
 defined, 62
 in the drill stem, 44f
 kelly and, 38f, 39f
 location of, 28f
 overview of, 35–36, 35f, 50
 rotating system and, 34f
 attaching to the traveling block, 28
 swivel stem, 44f
 swivel sub, 44f

 telescoping derrick, 18
thixotropic properties of muds, 54
thribble, 45
tong-line pull, monitoring, 82
tongs. See automated tongs; makeup tongs.
tool joints, 34f, 36, 44f, 45, 46, 46f, 47
toolhouse, 83, 84
toolpushers, 73, 83, 84, 86, 90, 92
tools. See auxiliary equipment.
top drive
 circulating system and, 51

layout of, 14
operation of, 14
overview of, 36, 37f, 50, 62
rotating system and, 34f
using a saver sub in, 42
torque, 8, 14
torque-converter drives, 11
torquing up, 46
tourpushers, 86, 92
tours, 87, 90–91, 91f, 92
transformers for distributing power, 79
transmission system, 25
traveling block. See also blocks:
 lowering or raising the drill stem, 31
 location of, 28f
 overview of, 27, 28, 27f
 purpose of, 20, 25
 rotating system and, 34f
 slipping the line, 31
 string-up, 29, 30f
 tripping out (the drill string), 2, 68, 89
triplex pump. See single-acting three-cylinder (triplex) pumps.
tubing, 20
tugger, 23
tungsten carbide bit, 47
twelve-hour tour, 90–91, 91f, 92

underbalanced drilling, 55
upper kelly cock, 34f, 39f, 40, 40f, 44f
upper upset (of the kelly), 44f

venting, 74
viscosity of mud, 54

wall cake, 54, 55
washpipe, 36
water-based drilling fluid, 54
weighting materials, 54, 80
wellbore, 52f, 53
well-control equipment. See also blowout; blowout preventer (BOP).
 accumulators, 69–70, 69f
 blowout preventers, 65–68
 chokes, 71–73, 71f, 72f
THE ROTARY RIG AND ITS COMPONENTS

circulating a kick, 73
mud-gas separators, 74, 74f
overview of, 63–64, 64f
well-killing procedures, 72

well site, 2
wire rope. See drilling line.
work shifts, 90–91, 91f
To obtain additional training materials, contact:

PETEX
THE UNIVERSITY OF TEXAS AT AUSTIN
PETROLEUM EXTENSION SERVICE
J.J. Pickle Research Campus
10100 Burnet Road, Bldg. 2
Austin, TX 78758
Telephone: 512-471-5940
or 800-687-4132
FAX: 512-471-9410
or 800-687-7839
E-mail: petex@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex

To obtain information about training courses, contact:

PETEX
LEARNING AND ASSESSMENT CENTER
THE UNIVERSITY OF TEXAS
4702 N. Sam Houston Parkway West, Suite 800
Houston, TX 77086
Telephone: 281-397-2440
or 800-687-7052
FAX: 281-397-2441
E-mail: plach@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex