The Roughneck Training Handbook
The Roughneck Training Handbook

First Edition

by Ron Baker
Library of Congress Cataloging-in-Publication Data

Names: Baker, Ron, 1940-
Title: The roughneck training handbook / by Ron Baker.
Subjects: LCSH: Oil well drilling—Study and teaching—Handbooks, manuals, etc. | Petroleum workers—Training of—Handbooks, manuals, etc.

Disclaimer

Although all reasonable care has been taken in preparing this publication, the authors, the Petroleum Extension Service (PETEX®) of The University of Texas at Austin, and any other individuals and their affiliated groups involved in preparing this content, assume no responsibility for the consequences of its use. Each recipient should ensure he or she is properly trained and informed about the unique policies and practices regarding application of the information contained herein. Any recommendations, descriptions, and methods in this book are presented solely for educational purposes.

©2017 by The University of Texas at Austin
All rights reserved
First Edition published 2017
Printed in the United States of America

This book or parts thereof may not be reproduced in any form without permission of Petroleum Extension (PETEX), The University of Texas at Austin. PETEX publications contain copyrighted material. Users may not resell, assign, distribute, or transfer all or part of this content to reuse in any way; or create derivative works from this content without explicit permission from the copyright owner.

Brand names, company names, trademarks, or other identifying symbols appearing in illustrations and/or text are used for educational purposes only and do not constitute an endorsement by the author or the publisher.

Catalog no. 2.02010
ISBN 978-0-88698-274-4
0-88698-274-X

No state tax funds were used to publish this book. The University of Texas at Austin is an equal opportunity employer.
Contents

- Figures vii
- Foreword ix
- Preface xi
- Acknowledgments xiii
- About the Author xv
- Units of Measurement xvi
- Introduction 1
- What Does a Roughneck Do? 3
 - The Drilling Crew 3
 - Handling Tubulars 4
 - Drill Pipe 4
 - Drill Collars 5
 - Drill String and Drill Stem 5
 - Summary 6
- Drilling a Well in Stages 7
 - Pipe Handling 8
 - Top Drives 10
 - Pipe Delivery Systems 11
 - Iron Derrickhands 13
 - Hydraulic Catwalks 14
 - Slips 16
 - Bails and Elevators 17
 - Pipe Racks 20
 - Forklifts 21
 - Walking Rigs 22
 - Summary 23
- About the Drill String 25
 - Tripping 25
 - Laying Down Pipe 26
 - Drill String 26
 - Joints 26
 - Stands 26
Slugging the Drill String 68
Tripping Out 68
 Closing the Standpipe Valve 69
 Closing the Kelly Cock or Mud Saver Valve 71
Rathole 72
Pipe Wipers 73
Breaking Out Pipe 74
 Using Manual Tongs 75
 Using Iron Floorhands 75
 Spinning out and Setting Back 76
 Traditional Method 78
 Iron Derrickhand Method 78
Bottomhole Assemblies 81
 Drill Collars 81
 Heavyweight Drill Pipe 84
 Drill Bits 85
 Stabilizers 87
 Other Tools 88
 Drill Collar Tongs 88
 Hydraulic Catheads 88
 Drill Collar Slips and Safety Clamps 89
 Elevator Shoulders and Lifting Subs 89
Removing the Bit 91
Tripping In 92
 Bit Subs and Bit Breakers 92
 Handling New Drill Collars 92
 Making up Collars 94
 Making up Drill Pipe 94
Spinning Up 96
 Using Top Drives or Iron Floorhands 96
 Using Spinning Wrenches 96
 Using Spinning Chains 96
 Using Kelly Spinners 99
 Using Top Drives 100
 Improperly Spinning Up 100
 Making Up to Final Torque 101
Summary 102
Making a Connection 105
 Conventional Catwalks 106
 Mousehole 106
 Inserting Pipe into the Mousehole 106
 More about Hydraulic Catwalks 112
Making Connections with Top Drives 113
Making Connections with Kelly Drives 114
 Kelly Saver Sub 114
Stabbing, Spinning up, and Bucking Up 114
 Making up the Mousehole Joint in String 116
Making Connections with Iron Derrickhands 116
Summary 117

Laying Down Pipe 119
 Preparation 119
 How to Lay Down Pipe 121
 Using the Hydraulic Catwalk 122
 Other Methods 122
 Iron Derrickhand Method 124
 Laydown Machine 124
 Summary 125

Conclusion 127

Appendix: Figure Credits 129

Glossary 133

Review Questions 149

Index 159

Answer Key 165
Figures

Frontispiece xviii
1. Iron floorhand 9
2. Manual tongs 9
3. Top drive 10
4. Iron derrickhand 11
5. Hydraulic catwalk 12
6. Monkeyboard 13
7. Conventional catwalk 14
8. Hydraulic catwalk with a raised front end 15
9. Drill pipe slips 16
10. Power slips 16
11. Elevators latched on pipe 17
12. Elevators on a top drive 18
13. Elevators on a hook 19
14. Pipe on a pipe rack 20
15. Forklift with pipe 21
16. Drill bit 25
17. Cross sections of square and hexagonal kellys 27
18. Kelly drive rotating system 27
19. Drill pipe tool joints (box and pin together) 29
20. Elevators latched on a tool joint 31
21. Rig hoisting system 36
22. Swivel 38
23. Top drive 39
24. Tongs 40
25. Tongs suspended by the wire rope 41
26. Tong counterweight 42
27. Tong wire rope clevis and eye 43
28. 90-degree angle between the tong lever and snub line 45
29. Tong torque gauge 46
30. Tongs with closed jaws hanging slightly higher than level with the rig floor 47
31. Tongs with open jaws hanging slightly lower than level with the rig floor 47
32. Tong hinge pin 48
33. Tong dies installed in the tongs 49
34. Dies in drill pipe slips 51
35. Pipe suspended in the master bushing bowl with arrows showing force pushing downward and outward toward the master bushing bowl 51
36. Drill pipe slips 52
37. Die keeper in the drill pipe tongs 52
38. Drill collar slips 53
39. Button dies on the drill collar slips 53
40. Drill collar safety clamp 54
41. Three-person team on the slip handles 56
42. Straight edge on the back side of the slips 58
43. Slip die paper test 59
44. Safety valve on the rig floor 65
45. Standpipe 69
46. Rotary hose 70
47. Kelly cock on the top drive 71
48. Kelly and swivel set back in the rathole 72
49. Elevators latched on pipe hanging in the rotary table 73
50. Split pipe wiper 73
51. Pipe spinner 77
52. Iron derrickhand in use 79
53. Spirally grooved drill collar 82
54. Square drill collar 83
55. Heavyweight drill pipe showing the tool joints and wear pads 84
56. Roller cone bits 85
57. Diamond drilling bit 86
58. PDC drilling bit 86
59. PDC cutter card stud 87
60. Stabilizer in the drill string 87
61. Hydraulic cathead 88
62. Drill collar threads 89
63. Elevator shoulder on a drill collar 90
64. Lifting sub 90
65. Bit breaker in the rotary table 91
66. Chain tongs placed on a drill collar 93
67. Spinning chain wrapped several times around the lower tool joint before the top tool joint is stabbed 97
68. Throwing the spinning chain 98
69. Kelly spinner 99
70. Mousehole 107
71. Crewmember working at an air hoist 108
72. Lifting nubbin being screwed into box threads 109
73. Closeup of a lifting nubbin 109
74. Crewmember using soft line to guide a joint onto the rig floor 111
75. Hydraulic catwalk raised up to the V-door 112
76. Kelly stabbed into the joint in the mousehole 115
77. Thread protector on threads 120
78. Crewmembers using a dolly to move a joint of pipe from the ramp to the catwalk 123
79. Laydown machine to lay down pipe 125
Foreword

Just as the military is made up of soldiers who carry out the orders of high-ranking officers, so the petroleum industry is made up of workers who carry out the drilling plans of corporate executives. These workers perform their duties not in climate-controlled offices on the upper floors of buildings in metropolitan areas but on rig floors around the world, from the Sahara Desert to north of the Arctic Circle. While such workers are now classified using a more generalized term—rotary helpers—they have traditionally been known as roughnecks or floorhands, as they are referred to in this handbook.

At PETEX, we are now filling a gap in our catalog. Although we offer many books that are popular and well-regarded throughout the industry, as well as a series of videos (Roughneck Training, Parts I–V) meant to be used as training tools for people beginning work as rotary helpers, we did not have a collection of key information in book format that could be used as a handy reference and workbook for new floorhands. Now we do. The Roughneck Training Handbook is meant to fulfill an increasing need in an industry that is currently flourishing with new floorhands and rig activity to address the massive energy needs of our current society.

With this new handbook, we hope to provide an easy-to-use text that upholds our standards as a worldwide leader of learning content for the petroleum industry. And we also hope to educate the next generation of floorhands (roughnecks), whose labors move the industry forward.

Petroleum Extension (PETEX)
The University of Texas at Austin
Preface

Handling tubular goods such as drill pipe and drill collars on a drilling rig is one of the most important jobs rig crewmembers perform. It is vital that crewmembers carry out this job correctly and safely. Drill pipe and drill collars undergo a considerable amount of arduous use under normal conditions when a well is drilled. Failure to run and handle tubulars properly can drastically shorten their useful life, which results in unnecessary expense to the drilling contractor. Even more critically, running and handling tubulars improperly can result in injuries and even fatalities among the crew.

The main purpose of *The Roughneck Training Handbook* is to describe and explain drill pipe, drill collars, and the tools used to work with such pipe, as well as the proper use and maintenance of both pipe and tools. Although the book was intended primarily for rig workers who have little or no experience on the rig floor, it can also benefit experienced rig hands who want to find out more about the pipe and pipe-handling equipment employed on the rig.

Over the years, many important technological advances have made the job of handling drill pipe and drill collars safer and less laborious. Consequently, every attempt was made to ensure that this book covered the latest in pipe-handling equipment and methods. Moreover, because not every rig utilizes the newest tools, the manual also covers traditional equipment and methods.

Ron Baker
Petroleum Industry Consultant
and Author
Austin, Texas
PETEX wishes to recognize the extensive assistance received from all personnel at Bandera Drilling Company in Abilene, Texas, and especially Ray Brazzel, President, and Anthony Zacniewski, HSE Director. They provided access to Bandera’s rigs and patiently answered a multitude of questions. In addition, many thanks go to Tom Thomas, Rig Training LLC, who read the manuscript and offered many helpful suggestions.

This book would not have been possible without the contributions of numerous individuals. First and foremost, I would like to thank Ron Baker for serving as such an engaged and engaging author. And I would like to extend my appreciation to my colleagues at the Petroleum Extension Service (PETEX), including Debby Denehy, Director of Publishing, Communications, and Branding; Debbie Caples, Senior Graphics Designer; E.K. Weaver, Graphics Designer; Leah Lehmann, Proofreader and Digital Librarian; and Virginia Dosher and Dewey Badeaux, fellow Editors.

Mary Lin
Editor, PETEX
The University of Texas at Austin
About the Author

Ron graduated from The University of Texas at Austin in 1962, earning a B.A. degree. In 1963, he joined the Petroleum Extension (PETEX) as a photographer. His job was to travel to drilling rigs and other oilfield facilities to take pictures for slide-tape training programs and training manuals. He also wrote and directed audiovisual scripts for slide-tape programs, films, and videos that PETEX produced for oilfield training. He worked extensively with drilling and production personnel all over the world, both on land and offshore. In 1985, he became director of PETEX, which required him to work closely with many industry training organizations, including the American Petroleum Institute (API), International Association of Drilling Contractors (IADC), and Association of Energy Service Companies (AESC). In the course of his work, he traveled to locations all over the world to disseminate PETEX training programs and to assist companies in establishing oilfield training programs. Ron retired in 2003 but continues to work with oil and gas companies wherever his oilfield training skills are needed.
Units of Measurement

Throughout the world, two systems of measurement dominate: the English system and the metric system. Today, the United States is one of only a few countries that employ the English system.

The English system uses the pound as the unit of weight, the foot as the unit of length, and the gallon as the unit of capacity. In the English system, for example, 1 foot equals 12 inches, 1 yard equals 36 inches, and 1 mile equals 5,280 feet or 1,760 yards.

The metric system uses the gram as the unit of weight, the metre as the unit of length, and the litre as the unit of capacity. In the metric system, 1 metre equals 10 decimetres, 100 centimetres, or 1,000 millimetres. A kilometre equals 1,000 metres. The metric system, unlike the English system, uses a base of 10; thus, it is easy to convert from one unit to another. To convert from one unit to another in the English system, you must memorize or look up the values.

In the late 1970s, the Eleventh General Conference on Weights and Measures described and adopted the Système International (SI) d’Unités. Conference participants based the SI system on the metric system and designed it as an international standard of measurement. The Rotary Drilling Series gives both English and SI units. And because the SI system employs the British spelling of many of the terms, the book follows those spelling rules as well. The unit of length, for example, is metre, not meter. (Note, however, that the unit of weight is gram, not gramme.)

To aid U.S. readers in making and understanding the conversion system, we include the table on the next page.
English-Units-to-SI-Units Conversion Factors

<table>
<thead>
<tr>
<th>Quantity or Property</th>
<th>English Units</th>
<th>Multiply by</th>
<th>To Obtain These SI Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length, depth, or height</td>
<td>inches (in.)</td>
<td>25.4</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td></td>
<td>feet (ft)</td>
<td>2.54</td>
<td>centimetres (cm)</td>
</tr>
<tr>
<td></td>
<td>yards (yd)</td>
<td>0.3048</td>
<td>metres (m)</td>
</tr>
<tr>
<td></td>
<td>miles (mi)</td>
<td>0.9144</td>
<td>metres (m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1609.344</td>
<td>kilometres (km)</td>
</tr>
<tr>
<td>Hole and pipe diameters, bit size</td>
<td>inches (in.)</td>
<td>25.4</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td>Drilling rate</td>
<td>feet per hour (ft/h)</td>
<td>0.3048</td>
<td>metres per hour (m/h)</td>
</tr>
<tr>
<td>Weight on bit</td>
<td>pounds (lb)</td>
<td>0.445</td>
<td>decanewtons (dN)</td>
</tr>
<tr>
<td>Nozzle size</td>
<td>32nds of an inch</td>
<td>0.8</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td></td>
<td>barrels (bbl)</td>
<td>0.159</td>
<td>cubic metres (m³)</td>
</tr>
<tr>
<td></td>
<td>gallons per stroke (gal/stroke)</td>
<td>0.00379</td>
<td>cubic metres per stroke (m³/stroke)</td>
</tr>
<tr>
<td></td>
<td>ounces (oz)</td>
<td>29.57</td>
<td>millilitres (mL)</td>
</tr>
<tr>
<td>Volume</td>
<td>cubic inches (in.³)</td>
<td>16.387</td>
<td>cubic centimetres (cm³)</td>
</tr>
<tr>
<td></td>
<td>cubic feet (ft³)</td>
<td>0.0283</td>
<td>cubic metres (m³)</td>
</tr>
<tr>
<td></td>
<td>quarts (qt)</td>
<td>0.9464</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>gallons (gal)</td>
<td>3.7854</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>pounds per barrel (lb/bbl)</td>
<td>0.148</td>
<td>kilograms per metre (kg/m)</td>
</tr>
<tr>
<td>Pump output and flow rate</td>
<td>gallons per minute (gpm)</td>
<td>0.00379</td>
<td>cubic metres per minute (m³/min)</td>
</tr>
<tr>
<td></td>
<td>gallons per hour (gph)</td>
<td>0.00379</td>
<td>cubic metres per hour (m³/h)</td>
</tr>
<tr>
<td></td>
<td>barrels per stroke (bbl/stroke)</td>
<td>0.159</td>
<td>cubic metres per stroke (m³/stroke)</td>
</tr>
<tr>
<td></td>
<td>barrels per minute (bbl/min)</td>
<td>0.159</td>
<td>cubic metres per minute (m³/min)</td>
</tr>
<tr>
<td>Pressure</td>
<td>pounds per square inch (psi)</td>
<td>6.895</td>
<td>kilopascals (kPa)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.006895</td>
<td>megapascals (MPa)</td>
</tr>
<tr>
<td>Temperature</td>
<td>degrees Fahrenheit (°F)</td>
<td>°F - 32</td>
<td>degrees Celsius (°C)</td>
</tr>
<tr>
<td>Mass (weight)</td>
<td>ounces (oz)</td>
<td>28.35</td>
<td>grams (g)</td>
</tr>
<tr>
<td></td>
<td>pounds (lb)</td>
<td>453.59</td>
<td>grams (g)</td>
</tr>
<tr>
<td></td>
<td>tons (tn)</td>
<td>0.4536</td>
<td>kilograms (kg)</td>
</tr>
<tr>
<td></td>
<td>pounds per foot (lb/ft)</td>
<td>0.9072</td>
<td>tonnes (t)</td>
</tr>
<tr>
<td></td>
<td>pounds per foot (lb/ft)</td>
<td>1.488</td>
<td>kilograms per metre (kg/m)</td>
</tr>
<tr>
<td>Mud weight</td>
<td>pounds per gallon (ppg)</td>
<td>119.82</td>
<td>kilograms per cubic metre (kg/m³)</td>
</tr>
<tr>
<td></td>
<td>pounds per cubic foot (lb/ft³)</td>
<td>16.0</td>
<td>kilograms per cubic metre (kg/m³)</td>
</tr>
<tr>
<td>Pressure gradient</td>
<td>pounds per square inch per foot (psi/ft)</td>
<td>22.621</td>
<td>kilopascals per metre (kPa/m)</td>
</tr>
<tr>
<td>Funnel viscosity</td>
<td>seconds per quart (s/qt)</td>
<td>1.057</td>
<td>seconds per litre (s/L)</td>
</tr>
<tr>
<td>Yield point</td>
<td>pounds per 100 square feet (lb/100 ft²)</td>
<td>0.48</td>
<td>pascals (Pa)</td>
</tr>
<tr>
<td>Gel strength</td>
<td>pounds per 100 square feet (lb/100 ft²)</td>
<td>0.48</td>
<td>pascals (Pa)</td>
</tr>
<tr>
<td>Filter cake thickness</td>
<td>32nds of an inch</td>
<td>0.8</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td>Power</td>
<td>horsepower (hp)</td>
<td>0.75</td>
<td>kilowatts (kW)</td>
</tr>
<tr>
<td>Area</td>
<td>square inches (in.²)</td>
<td>0.645</td>
<td>square centimetres (cm²)</td>
</tr>
<tr>
<td></td>
<td>square feet (ft²)</td>
<td>0.0929</td>
<td>square metres (m²)</td>
</tr>
<tr>
<td></td>
<td>square yards (yd²)</td>
<td>0.8361</td>
<td>square metres (m²)</td>
</tr>
<tr>
<td></td>
<td>square miles (mi²)</td>
<td>2.59</td>
<td>square kilometres (km²)</td>
</tr>
<tr>
<td></td>
<td>acre (ac)</td>
<td>0.40</td>
<td>hectare (ha)</td>
</tr>
<tr>
<td>Drilling line wear</td>
<td>ton-miles (tn•mi)</td>
<td>14.317</td>
<td>megajoules (MJ)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.459</td>
<td>tonne-kilometres (t•km)</td>
</tr>
<tr>
<td>Torque</td>
<td>foot-pounds (ft•lb)</td>
<td>1.3558</td>
<td>newton metres (N•m)</td>
</tr>
</tbody>
</table>
Because this manual is intended for readers who might not have a great deal of knowledge about the process, it explains many terms that are unique to rotary drilling. It also describes the tools the rig crew uses to handle pipe, as well as the functions of various tools and the procedures during which such tools are required.

A rotary drilling rig is a complex assembly of tools and equipment that requires skilled personnel to operate. Although many capable people are needed for every drilling project, the members of the rig crew who are especially vital to the operation are those who work on or near the rig floor. The next chapters describe the various roles and responsibilities of the drilling crew and the important equipment they handle on the drilling rig on a daily basis. Each of these job roles plays an important part in the overall process of drilling a well, from setup to job completion. Today’s roughnecks—a slang term for those rig crewmembers more commonly referred to nowadays as floorhands—are the backbone of the drilling operations. This text gives a firsthand account of the key tasks of floorhands and how their hard work integrates with the laborious process of successfully tapping underground targets of oil and gas.
What Does a Roughneck Do?

In this chapter:
- Drilling crewmembers
- Crewmember tasks
- Types of tubulars

Drillers are in control of the rig. Their responsibilities include operating the rig’s equipment and supervising the floorhands (also known as roughnecks). Floorhands are an essential working component of the drill crew. They take care of tasks associated with maintaining and cleaning the drill floor and all the drilling equipment, without which drilling would not—and could not—occur. The floorhands work on the rig floor during pipe-handling operations. During tripping operations, floorhands assist with safely and efficiently making up and breaking out the drill string. The senior floorhand usually maintains and monitors the important equipment that controls the solids, along with other activities onboard the rig.

Derrickhands are also supervised by drillers. They monitor and maintain the special fluid and related equipment required to drill a well with a rotary rig. In addition, derrickhands handle the upper end of the drill string when the crew removes pipe from, or puts pipe in, the bore.

The owner of the rig, typically a drilling contractor—a company that specializes in drilling oil and gas wells—expects crewmembers to use and properly maintain the tools required to carry out assigned tasks. These crewmembers include:
- Driller
- Derrickhand
- Floorhands (usually three), sometimes also called rotary helpers
Drilling a Well in Stages

In this chapter:

- Steps of drilling a well
- Tools and devices for handling pipe
- Pipe delivery systems
- Walking rigs

Rig personnel do not normally drill a well in one step; in other words, they do not start the hole at the surface and drill it without stopping until they reach the targeted rock formation. Instead, primarily because of the characteristics of the rock formations that the wellbore penetrates, they drill the hole in steps or stages, including:

- Drilling the hole to a predetermined diameter and depth
- Stopping drilling temporarily when a section of hole is completed
- Removing the entire string of pipe from the hole
- Making up and lowering joints of relatively large diameter pipe, called casing, into the hole.
- Cementing the casing in place
- Running instruments called logging tools into the hole to check hole conditions

Casing lines the entire hole and, when properly cemented in place, protects and isolates the rock formations behind it. After the casing is set and cemented, the crew can resume drilling or, after the final string of casing is run, begin completing the well.
Logging tools are electrical, acoustical, mechanical, or radioactive instruments that measure and record characteristics of the well itself and of the formations the hole penetrates. The logging tools create a log, which is a record of the tool's measurements. Knowledgeable personnel can examine and interpret logs to obtain vital information about the well's condition and the formations it has penetrated.

For reasons related to the type of rocks and the fluids the rocks might contain, the crew typically drills a well in three or more stages. They might drill, case, and cement three or more sections of hole until it bottoms out—in other words, until it reaches the formation of interest, which is usually the formation that the oil company believes contains hydrocarbons (oil, gas, or both).

Pipe Handling

Drilling a well in stages requires many pipe-handling tools to pull the drill string out and run it back into the hole. Pipe-handling tools include:

- Pipe makeup and breakout devices
- Rotating machines
- Pipe lifting tools
- Pipe suspension devices
- Pipe racking devices
- Pipe conveyors
- Vehicles

Pipe makeup and breakout devices include tongs or automated spinning and torqueing equipment known as an iron floorhand (fig. 1). An iron floorhand is a large, self-contained machine mounted on the rig floor. When activated, it moves into position around the pipe joint to be made up or broken out. The device's built-in power tongs spin up and make up, or break out and spin out the joint.

It is important to note that, in the industry, iron floorhands are commonly known as Iron Roughnecks™. However, because the term Iron Roughnecks™ is a trademarked name and refers to a specific product, the term iron floorhands is used throughout this book.
Some crews use manual tongs (fig. 2) instead of an iron floorhand to \textit{torque} the pipe. Tongs are large heavy-duty wrenches that floorhands use to make up and break out pipe. Floorhands manually handle and attach such tongs when making up and breaking out pipe. Even rigs with an iron floorhand usually maintain a set of manual tongs either as backup, should the iron floorhand malfunction at a critical time, or in case tongs are required in special situations.

On rigs with manual tongs only, crewmembers might use a \textit{spinning wrench} or, in rare cases, a \textit{spinning chain}. Before a joint can be \textit{bucked up} (tightened), it must first be rapidly rotated, or \textit{spun up}. A spinning wrench is a pneumatic or hydraulically powered device crewmembers use to rapidly rotate (spin) the male threads of one joint of pipe into the female threads of another joint of pipe. Air or hydraulic fluid drives hardened steel rollers that, when the wrench is latched around the pipe and actuated, contact and rapidly spin up the pipe.

A spinning chain is a length of chain that, when wrapped around a joint of pipe and rapidly pulled off the joint by a device on the rig called an \textit{automatic cathead}, spins up a joint. Regardless of the tool used, crewmembers must spin up joints of pipe when they trip pipe and make connections.
Drilling a well occurs in multiple steps or stages, including drilling to a predetermined depth and diameter, stopping drilling, removing the string of pipe from the hole, making up and lowering casing into the hole to protect its sides, cementing the casing in place, running logging tools to check hole conditions, and then resuming drilling.

To make up and break out pipe from the hole, floorhands use tongs or, more commonly, automated spinning and torqueing equipment known as iron floorhands with built-in power tongs. Rigs with iron floorhands often maintain a set of manual tongs as backup or for special situations.

Top drives are used by most of today’s rigs, because they directly rotate the drill string using a powerful motor without requiring the swivel, kelly, and other rotating machinery of the rotary table.

Delivering pipe joints from where they are stored in horizontal stacks to their vertical positions in the rig’s derrick can be performed manually or automatically using an iron derrickhand and hydraulic catwalk. Both are remote-controlled devices that allow pipe to be raised from the pipe rack to the rig floor and vice versa, using moveable arms and a slanting catwalk.

Crewmembers use a variety of tools to suspend the pipe in the hole while making up or breaking out pipe. These include manual slips, a rugged wedge-shaped device with three segments with handles, and pneumatically or spring-operated power slips. They also use elevators, a set of hinged clamps attached to bails.

Joints of drill pipe and drill collars are stored on horizontal pipe racks at the rig’s location. They can be moved from one place to another on the rig location using a forklift driven by a qualified, certified crewmember.

Walking rigs are increasingly common because they can be remotely controlled to walk from one hole to another on hydraulic feet, instead of needing to be disassembled and reassembled between holes.
About the Drill String

In this chapter:

- Making a connection
- Procedure for making a trip
- Laying down pipe
- Drill string joints and stands
- Kelly rotating systems and components

Making a connection occurs as the hole is drilled deeper and involves adding a joint or joints of pipe to the string of pipe to deepen the hole. Rig crews use top drives (or conventional swivels and kellys), iron floorhands, tongs, iron derrickhands, hydraulic catwalks, and slips to make a connection and to make a trip. In addition, top drives also rotate the drill string and bit drill when the bit is on bottom and drilling.

Making a trip entails hoisting the drill string out of the hole and then running it back into the hole. To trip pipe, crewmembers use iron floorhands or tongs to make up and break out joints of pipe while the slips suspend the drill string in the hole. As pipe comes out of the hole, they break it out; as pipe goes back in, they make it up.

One of the most common reasons to make a trip is to change the drill bit (fig. 16). It can become dull, or the characteristics of the rocks being drilled can change so that using a different type of bit becomes necessary. In either case, the crew performs the following procedure:

1. Pull the pipe out of the hole.
2. Remove the old bit.
3. Put a new bit on the drill string.
4. Run the assembly back into the hole to continue drilling.

Tripping

Figure 16. Drill bit
Laying Down Pipe

When the crew finishes drilling a well, they lay down pipe. They pull pipe from the hole and place it on a pipe rack one joint at a time. On land rigs, the rack supports the joints of pipe to keep them off the ground. Once the pipe is on the rack, workers can use a forklift to load it onto trucks and move it to a new drilling location. On offshore rigs, racks keep the joints of pipe off the deck, and cranes load it onto workboats to move it to a new drilling location. On large offshore rigs, the pipe remains stored on the rig as it is moved to a new drilling location.

Drill String

A typical drill string consists of several joints of drill pipe and drill collars. For example, a well 10,000 feet (3,000 metres) deep could have over 300 joints of drill pipe making up most of the drill string. The remainder would consist of the thick-walled drill collars to put weight on the bit to make it drill. A drill string usually also includes several joints of heavyweight drill pipe that the crew makes up in the string between the stiffer drill collars and the more limber drill pipe. By placing heavyweight drill pipe in this area of the drill string, the crew can prevent the failure of regular drill pipe. Heavyweight pipe provides a flexible transition between the drill collars and the drill pipe, which reduces drill pipe failures as it is rotated.

In directional drilling, instead of drill collars, the rig crew typically places heavyweight drill pipe below regular-weight drill pipe to put weight on the bit. Heavyweight pipe is more flexible than drill collars and can therefore go through curved-hole sections easier than drill collars can.

Stands

The crew typically pulls out (removes) and runs in (inserts) drill pipe and drill collars in stands. On large offshore rigs, a stand might consist of four joints, whereas on small- or medium-sized land rigs, a stand might be made up of only two joints. Traditionally, a typical stand consists of three joints of Range-2 drill pipe, which is 27 to 30 feet (8.2 to 9.1 metres) long. Therefore, such a stand is 81 to 90 feet (24.7 to 27.4 metres) long. Usually, however, for convenience, personnel simply consider a three-joint stand to be 90 feet (27.4 metres) long. Many rigs still run pipe in three-joint stands; however, many do not, so bear in mind that stand length varies. However, regardless of the stand's length, pulling drill pipe and drill collars in stands means crewmembers can run pipe in and out of the hole more quickly than running it in and out one joint at a time.
How a Rig Drills

In this chapter:

• Structures of a rig’s hoisting system
• Tong components
• Slip types
• Proper usage and inspection of slips

To understand how rig crews handle pipe on a rig when they make a connection or trip pipe in and out of the hole, it is necessary to know more about how a rig drills. For example, when tripping pipe or making a connection, the rig’s hoisting equipment comes into play. A rig’s hoisting system is somewhat like a vertical version of a horizontal construction crane you see at a building site. Just as a crane uses a block and tackle to raise and lower heavy loads, so does the rig’s hoisting system.

A rig’s hoisting system (fig. 21) consists of the following:

• Drawworks—a large hoist usually driven by powerful electric motors
• Drilling line—strong, thick wire rope that is spooled around a drum in the drawworks
• Mast or derrick—the tall steel structure that is so distinctive on drilling rigs
• Crown block
• Traveling block

Hoisting System
Figure 21. Rig hoisting system
Making a Round Trip

In this chapter:

- Safety measures on a rig
- Preventing kicks and blowouts
- Making up and breaking out pipe
- Tripping in and out of the hole
- Components of bottomhole assemblies
- Drill bit types and tools

To understand how crewmembers employ the hoisting system, top drives, tongs, slips, and other equipment, consider a typical job of tripping the drill string out of and back into the hole (otherwise known as making a round trip). The rig crew should conduct a pre-job safety meeting before beginning the trip and monitor several factors during the procedure:

- Check tools and equipment.
- Monitor for kicks.
- Watch mud levels.
- Watch for swabbing in of fluid.
- Control flowing fluid.
- Monitor the trip tank.
- Keep the drill floor mud-free.
Pre-Job Safety Meetings

An important first step for all crewmembers is to conduct a pre-job safety meeting on the rig floor. The concept behind this safety meeting is that the rig crew—which typically includes the driller, the derrick-hand, and the floorhands—can discuss details of the upcoming job (in this case, tripping pipe). As the immediate supervisor on the floor, the driller should point out the duties required of each person involved in the task. He or she should explain exactly what each crewmember will do and what tools they will use to do it. If crewmembers have questions or comments, this meeting is the time for them to bring them up. A pre-job safety meeting prepares the crew for the upcoming trip and helps ensure that everyone knows what is expected of him or her during the job.

Checking Tools and Equipment

An equally important step is for crewmembers to check that all their tools and equipment are in good working condition and are lubricated as required. Furthermore, they should be sure that all the required tools and materials are available for the trip. For example, they should place a full-opening drillstem safety valve (fig. 44) near the rotary table.

The valve should be in its open position so that it can be inserted into the drill string when drilling fluid is flowing from the drill string. Its threads should also be compatible with the threads of the tool joints in use. A full-opening safety valve is a valve that, when stabbed into a drill pipe joint, made up, and then closed, stops the flow of drilling fluid from the drill string. Drilling fluid can flow out of the drill string if the hole has penetrated a rock formation that contains high-pressure fluids and if crewmembers fail to keep the hole full of drilling fluid during the trip.
Figure 44. Safety valve on the rig floor
As previously mentioned, the floor crew makes a connection as the hole is drilled deeper. Making a connection can be defined as adding a joint (or joints) of drill pipe to the drill string as the hole is deepened. For example, if the rig is drilling with 30-foot (9-metre) joints of pipe, then, about every 30 feet (9 metres), the floorhands must add an additional joint of pipe for drilling to continue. In some cases, especially on large rigs with top drives, the crew can make up stands of pipe, set them back in the derrick (or place them on a hydraulic catwalk), and add them to the string as drilling progresses. Connecting stands instead of joints means the rig can, for example, drill down three 30-foot (9-metre) joints before making a connection, which is more efficient than adding one joint at a time.

To understand how to make a connection, it is necessary to learn about a few more tools and devices employed by crewmembers on a rotary rig. Drill pipe that the crew adds to the drill string to make a connection is usually stored on a pipe rack, which, in the case of land rigs, is set up on the ground near the rig. As mentioned earlier, a pipe rack consists of several steel tubes welded together to provide support for several joints of pipe. The crew positions the rack so that it is easy for them to roll a joint from the rack onto the rig’s catwalk.
Conventional Catwalks

A conventional catwalk is a horizontal steel deck that rests at the base of a pipe ramp, or slide. One end of the pipe ramp is attached to the catwalk while the other end slants upward to the rig floor. The crew places the drill pipe joint onto the pipe ramp prior to making a connection.

The upper end of the pipe ramp rests at the base of the rig’s V-door, a tall opening in a side of the derrick. Manufacturers build the derrick so that the girders and beams that the derrick is made of create an opening tall and wide enough to accommodate the joints of pipe and other tubulars that must pass through the derrick and to the rotary table. The V-door is on the opposite side of the rig floor from the drawworks. The name for the V-door comes from the fact that on the old standard derrick, the shape of the opening looked something like an inverted V.

Mousehole

Another feature on the rig floor related to making a connection is the mousehole (fig. 70), which is required on rigs that do not have an iron derrickhand-hydraulic catwalk arrangement. A mousehole is an opening in the rig floor, usually lined with relatively lightweight pipe, into which the crew lowers a joint of pipe that is to be made up in the string when it is time to make a connection. In short, the joint of pipe is stored in the mousehole until crewmembers are ready to connect it to the string.

As mentioned earlier, a rathole is also part of the rig floor. However, unlike the mousehole, which is usually flush with the floor, the rathole is usually lined with casing that projects a few feet above the floor. On rigs with a kelly drive, the crew stores the kelly and swivel in the rathole when they are tripping pipe.

Inserting Pipe into the Mousehole

To make a connection on rigs with a kelly-drive rotating system or a top drive, a joint of pipe should be in the mousehole where it is readily accessible to the crew when the kelly or a joint of pipe is drilled down. The kelly or joint is drilled down as the hole gets deeper. When almost the entire length of the kelly or the pipe approaches the top of the kelly bushing or, in the case of top drive rigs, when the pipe is close to the rotary table, it is time to make a connection.
Figure 70. Mousehole
In this chapter:

- Procedure for laying down pipe
- Using the hydraulic catwalk
- Other methods for laying down pipe

Laying down pipe is a job the crew performs when they have finished drilling the well and the rig is ready to be rigged down and moved to another drilling location. The job involves removing the drill string from the hole, one joint at time, and placing each joint on the pipe rack where all the joints can be loaded on a truck for the move to the next location.

Before beginning the job, it is good practice to have a pre-job safety meeting. This provides an opportunity for the driller to explain exactly what the job entails and what actions are expected from each crewmember. Moreover, a meeting gives crewmembers a chance to comment on the upcoming job and to ask questions they might have.
The crew should also ensure that the tools and materials required for the job are available and ready to use. For example, a bucket of good-quality pipe dope along with the brush needed to apply it should be available. In addition, the crew should place a drill pipe safety valve in the open position in a place on the rig floor that is easily accessible. Furthermore, it is good practice to have a container of thread protectors on the floor so that the crew can screw them onto the pin and box threads as they remove the pipe. A thread protector is a fitting that, when screwed onto the pin or box after a joint is pulled out of the hole, keeps the threads from being damaged as the pipe is handled (fig. 77).

Crewmembers should also check and lubricate equipment such as the top drive, tongs, slips, elevators, and rotary table to ensure they are in good working order. The crew should carry out any required maintenance on the tools and equipment and install a pipe wiper in the rotary table to remove any drilling fluid clinging to the outside of the pipe, as well. In addition, a freshwater hose should be available so a crewmember can hose down the outside of the pipe as it comes out of the hole. Lastly, if a joint of pipe remains in the mousehole, the crew should remove it and place it on the pipe rack.

Figure 77. Thread protector on threads
The crew begins laying down pipe on a kelly-drive rig or on a top-drive rig that does not have a hydraulic catwalk or an iron derrickhand as follows:

1. Crewmembers set the slips to suspend the pipe string in the rotary and break out the top drive or the kelly and swivel. On a rig with a kelly drive, the kelly and swivel are stored in the rathole.
2. The floorhands then dope the box threads of the pipe joint hanging in the rotary table and screw in a box thread protector.
3. The crew latches the elevators onto the tool joint in the rotary table, and the driller raises the string until the next tool joint clears the rotary.
4. A crewmember washes off the pipe’s body with fresh water from a hose as the driller raises the joint.
5. Floorhands then set the slips and break out the joint, using an iron floorhand or manual backup and breakout tongs.
6. The driller then spins out the joint using the top drive motor or rotary table on rigs with a kelly-drive system.

At this juncture, crewmembers can employ one of three methods for laying down pipe. Some rigs use a hydraulic catwalk, while others—mostly small land rigs—still use one of two traditional methods, which are more labor intensive in that the floorhands have to manually move the pipe from the rig floor to the pipe rack.
Conclusion

It is demanding work using top drives, iron floorhands, manual tongs, iron derrickhands, slips, and other rig equipment to make a connection, trip, and lay down pipe. It is crucial for all members of the drilling crew to understand how to use and maintain their tools safely and competently. A rig floor crew and the derrickhand (usually a five-person team) must work together to ensure that the tasks they perform go smoothly and without unreasonable delays. The key to achieving the goal of good teamwork depends on many things, including training, experience, and a willingness to do the job right. Therefore, crewmembers must learn as much as they can about the jobs they are expected to perform and the tools used to do them.
Glossary

air hoist n: a hoist operated by compressed air; a pneumatic hoist. Air hoists are often mounted on the rig floor and are used to lift joints of pipe and other heavy objects.

annular space n: 1. the space that surrounds a cylindrical object within a cylinder. 2. the space around a pipe in a well-bore, the outer wall of which may be the wall of either the borehole or the casing; sometimes termed the annulus.

annulus n: see **annular space**.

automatic cathead n: see **makeup cathead**.

backup tongs n pl: the tongs latched on the drill pipe joint hanging in the rotary by the slips, used to keep the pipe from turning as the makeup or breakout tongs (the lead tongs) apply torque to make up or break out the tightened tool joint connection. Compare **lead tongs**.

bail n: 1. a cylindrical steel bar (similar to the handle or bail of a bucket, only much larger) that supports the swivel and connects it to the hook. Sometimes, the two cylindrical bars that support the elevators and attach them to the hook are called bails or links. 2. the U-shaped handle on a nozzle used to close a valve that shuts off water flow when pushed forward. \(\text{v:} \) to recover bottomhole fluids, samples, or drill cuttings by lowering a cylindrical vessel called a bailer to the bottom of a well, filling it, and retrieving it.

BHA abbr: bottomhole assembly.

bit n: the cutting or boring element used in drilling oil and gas wells. The bit consists of a cutting element and a circulating element. The cutting element is steel teeth, tungsten carbide buttons, industrial diamonds, or polycrystalline diamonds (PDCs). These teeth, buttons, or diamonds penetrate and gouge or scrape the formation to remove it. The circulating element permits the passage of drilling fluid and utilizes the hydraulic force of the fluid stream to improve drilling rates. In rotary drilling, several drill collars are joined to the bottom end of the drill pipe column, and the bit is attached to the end of the drill collars. Drill collars provide weight on the bit to keep it in firm contact with the bottom of the hole. Most bits used in rotary drilling are roller cone bits, but diamond bits are also used extensively.

bit breaker n: a special device that fits into a bit breaker adapter (a plate that goes into the rotary table) and conforms to the shape of the bit. Rig workers place the bit to be made up or broken out of the drill stem into the bit breaker and lock the rotary table to hold the bit breaker and bit stationary so that they can tighten or loosen the bit.
Review Questions

1. The slang term *roughnecks* refers to—
 a. tubulars.
 b. trainers.
 c. floorhands.
 d. backups.

2. A set of hinged clamps called _____ make it possible to raise and lower pipe in the derrick.
 a. pipe racks
 b. hooks
 c. forklifts
 d. elevators

3. Which of the following is a pipe-related task that drilling crewmembers perform?
 a. Handling the tubulars needed to drill a well
 b. Monitoring for kicks
 c. Erecting the derrick or mast
 d. Moving the rig to a new location

4. _____ is the practice of coating pipe threads or slips with a good-quality anti-seize lubricant.
 a. Casing
 b. Doping
 c. Fitting
 d. Cementing

5. The length of a standard drill collar joint ranges from—
 a. 18 to 22 feet (5.5 to 6.7 metres).
 b. 25 to 27 feet (7.6 to 8.2 metres).
 c. 30 to 31 feet (9.1 to 9.5 metres).
 d. 40 to 42 feet (12.2 to 12.8 metres).

6. Which statement about drilling a well is true?
 a. The types of rock and the fluids the rock may contain do not affect the process of drilling the well.
To obtain additional training materials, contact:

PETEX®
PETROLEUM EXTENSION
The University of Texas at Austin
J.J. Pickle Research Campus
10100 Burnet Road, Bldg. 2
Austin, TX 78758

Telephone: 512-471-5940
or 800-687-4132
FAX: 512-471-9410
or 800-687-7839
Visit our website: petex.utexas.edu

To obtain information about training courses, contact:

PETEX®
HOUSTON TRAINING CENTER
The University of Texas at Austin
4702 N. Sam Houston Parkway West, Suite 800
Houston, TX 77086

Telephone: 281-397-2440
or 800-687-7052
Visit our website: petex.utexas.edu/our_courses