Safety on the Rig

UNIT I • LESSON 10
ROTARY DRILLING SERIES

Unit I: The Rig and Its Maintenance

Lesson 1: The Rotary Rig and Its Components
Lesson 2: The Bit
Lesson 3: Drill String and Drill Collars
Lesson 4: Rotary, Kelly, Swivel, Tongs, and Top Drive
Lesson 5: The Blocks and Drilling Line
Lesson 6: The Drawworks and the Compound
Lesson 7: Drilling Fluids, Mud Pumps, and Conditioning Equipment
Lesson 8: Diesel Engines and Electric Power
Lesson 9: The Auxiliaries
Lesson 10: Safety on the Rig

Unit II: Normal Drilling Operations

Lesson 1: Making Hole
Lesson 2: Drilling Fluids
Lesson 3: Drilling a Straight Hole
Lesson 4: Casing and Cementing
Lesson 5: Testing and Completing

Unit III: Nonroutine Operations

Lesson 1: Controlled Directional Drilling
Lesson 2: Open-Hole Fishing
Lesson 3: Blowout Prevention

Unit IV: Man Management and Rig Management

Unit V: Offshore Technology

Lesson 1: Wind, Waves, and Weather
Lesson 2: Spread Mooring Systems
Lesson 3: Buoyancy, Stability, and Trim
Lesson 4: Jacking Systems and Rig Moving Procedures
Lesson 5: Diving and Equipment
Lesson 6: Vessel Inspection and Maintenance
Lesson 7: Helicopter Safety
Lesson 8: Orientation for Offshore Crane Operations
Lesson 9: Life Offshore
Lesson 10: Marine Riser Systems and Subsea Blowout Preventers
Contents

Figures vii
Tables x
Foreword xi
Preface xiii
Acknowledgments xv
Units of Measurement xvi
Introduction 1
  Summary 4
People and Safety 5
  Operator 5
    Drilling Contractor or Rig Owner 6
    Drilling Superintendent 7
    Rig Manager (Toolpusher) 7
    Driller 8
    Crewmembers 9
  To Summarize 10
Personal Safety Equipment 11
  Hard Hat 12
  Safety Shoes and Boots 12
  Gloves 13
    Safety Glasses, Goggles, and Face Shields 13
    Clothing 14
    Specialized Equipment 15
  To Summarize 16
Safe Posture 17
  To Summarize 18
Offshore Transportation Safety 19
  Helicopter Transportation 21
  Crew Boat Transportation 22
  To Summarize 24
Hand-Tool Safety 25
  Hammers 26
  Wrenches 27
  Pliers 27
  Screwdrivers 28
  Chisels 29
  Files 30
  Shovels 30
  Brushes 30
  Portable Ladders 30
  To Summarize 31
Power-Tool Safety 33
  Air Tools 34
  Electric Tools 35
  To Summarize 36
Rig-Up Safety 37
  Rigging Up 38
  To Summarize 40

Drilling Operations and Equipment Safety 41
  Derrick or Mast 42
  Drawworks, Rotary Table, Rotary Hose, and Kelly 47
    Drawworks 47
    Rotary Table 48
    Rotary Hose 49
    Kelly 50
  Crown Block, Traveling Block, Hook, and Hoisting Line 51
    Crown Block 51
    Traveling Block 52
    Hook 52
    Hoisting Line 53
  Slips 56
  Pipe Tongs 58
  Spinning Chains 60
  Elevators 61
  Cathead and Catline 62
  Air Hoist 66
  To Summarize 67

Rigging Practices 69
  To Summarize 72

Power Generation 73
  Engines 73
  Compound 75
  To Summarize 76

Mud Pump and Mud Tank Safety 77
  Mud Pumps 77
  Mud Tanks 79
    Tank Safety 79
  To Summarize 80

Tubulars 81
  Rig Floor 81
  Pipe Rack, Bins, and Catwalk 82
  To Summarize 84

Hazardous Energy 85
  Electrical Hazards 85
  Lockout-Tagout 90
  To Summarize 92

Confined Spaces Safety 93
  To Summarize 94

Chemical Hazards 95
  Chemical Hazard Communication 95
    Labels 96
    Safety Data Sheets (SDSes) 97
Units of Measurement

Throughout the world, two systems of measurement dominate: the English system and the metric system. Today, the United States is one of only a few countries that employ the English system. The English system uses the pound as the unit of weight, the foot as the unit of length, and the gallon as the unit of capacity. In the English system, for example, 1 foot equals 12 inches, 1 yard equals 36 inches, and 1 mile equals 5,280 feet or 1,760 yards.

The metric system uses the gram as the unit of weight, the metre as the unit of length, and the litre as the unit of capacity. In the metric system, 1 metre equals 10 decimetres, 100 centimetres, or 1,000 millimetres. A kilometre equals 1,000 metres. The metric system, unlike the English system, uses a base of 10; thus, it is easy to convert from one unit to another. To convert from one unit to another in the English system, you must memorize or look up the values.

In the late 1970s, the Eleventh General Conference on Weights and Measures described and adopted the Système International (SI) d'Unités. Conference participants based the SI system on the metric system and designed it as an international standard of measurement.

The Rotary Drilling Series gives both English and SI units. And because the SI system employs the British spelling of many of the terms, the book follows those spelling rules as well. The unit of length, for example, is metre, not meter. (Note, however, that the unit of weight is gram, not gramme.)

To aid U.S. readers in making and understanding the conversion system, we include the table on the next page.
## English-Units-to-SI-Units Conversion Factors

<table>
<thead>
<tr>
<th>Quantity or Property</th>
<th>English Units</th>
<th>Multiply English Units By</th>
<th>To Obtain These SI Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length, depth, or height</td>
<td>inches (in.)</td>
<td>25.4</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td></td>
<td>feet (ft)</td>
<td>2.54</td>
<td>centimetres (cm)</td>
</tr>
<tr>
<td></td>
<td>yards (yd)</td>
<td>0.3048</td>
<td>metres (m)</td>
</tr>
<tr>
<td></td>
<td>miles (mi)</td>
<td>0.9144</td>
<td>metres (m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1609.344</td>
<td>kilometres (km)</td>
</tr>
<tr>
<td>Hole and pipe diameters, bit size</td>
<td>inches (in.)</td>
<td>25.4</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td>Drilling rate</td>
<td>feet per hour (ft/h)</td>
<td>0.3048</td>
<td>metres per hour (m/h)</td>
</tr>
<tr>
<td>Weight on bit</td>
<td>pounds (lb)</td>
<td>0.445</td>
<td>decanewtons (dN)</td>
</tr>
<tr>
<td>Nozzle size</td>
<td>32nds of an inch</td>
<td>0.8</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td></td>
<td>barrels (bbl)</td>
<td>0.159</td>
<td>cubic metres (m³)</td>
</tr>
<tr>
<td></td>
<td>gallons per stroke (gal/stroke)</td>
<td>0.00379</td>
<td>cubic metres per stroke (m³/stroke)</td>
</tr>
<tr>
<td></td>
<td>ounces (oz)</td>
<td>29.57</td>
<td>millilitres (mL)</td>
</tr>
<tr>
<td>Volume</td>
<td>cubic inches (in.³)</td>
<td>16.387</td>
<td>cubic centimetres (cm³)</td>
</tr>
<tr>
<td></td>
<td>cubic feet (ft³)</td>
<td>28.3169</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>quarts (qt)</td>
<td>0.9464</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td>gallons (gal)</td>
<td>3.7854</td>
<td>litres (L)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00379</td>
<td>cubic metres (m³)</td>
</tr>
<tr>
<td></td>
<td>pounds per barrel (lb/bbl)</td>
<td>2.205</td>
<td>kilogram per cubic metre (kg/m³)</td>
</tr>
<tr>
<td></td>
<td>barrels per ton (bbl/tn)</td>
<td>0.175</td>
<td>cubic metres per tonne (m³/t)</td>
</tr>
<tr>
<td>Pump output and flow rate</td>
<td>gallons per minute (gpm)</td>
<td>0.00379</td>
<td>cubic metres per minute (m³/min)</td>
</tr>
<tr>
<td></td>
<td>gallons per hour (gph)</td>
<td>0.00379</td>
<td>cubic metres per hour (m³/h)</td>
</tr>
<tr>
<td></td>
<td>barrels per stroke (bbl/stroke)</td>
<td>0.159</td>
<td>cubic metres per stroke (m³/stroke)</td>
</tr>
<tr>
<td></td>
<td>barrels per minute (bbl/min)</td>
<td>0.159</td>
<td>cubic metres per minute (m³/min)</td>
</tr>
<tr>
<td>Pressure</td>
<td>pounds per square inch (psi)</td>
<td>6.895</td>
<td>kilopascals (kPa)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.006895</td>
<td>megapascals (MPa)</td>
</tr>
<tr>
<td>Temperature</td>
<td>degrees Fahrenheit (°F)</td>
<td>°F - 32</td>
<td>degrees Celsius (°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Mass (weight)</td>
<td>ounces (oz)</td>
<td>28.35</td>
<td>grams (g)</td>
</tr>
<tr>
<td></td>
<td>pounds (lb)</td>
<td>453.59</td>
<td>grams (g)</td>
</tr>
<tr>
<td></td>
<td>tons (tn)</td>
<td>4.4536</td>
<td>kilograms (kg)</td>
</tr>
<tr>
<td></td>
<td>pounds per foot (lb/ft)</td>
<td>0.9072</td>
<td>tonnes (t)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.488</td>
<td>kilograms per metre (kg/m)</td>
</tr>
<tr>
<td>Mud weight</td>
<td>pounds per gallon (ppg)</td>
<td>119.82</td>
<td>kilograms per cubic metre (kg/m³)</td>
</tr>
<tr>
<td></td>
<td>pounds per cubic foot (lb/ft³)</td>
<td>16.0</td>
<td>kilograms per cubic metre (kg/m³)</td>
</tr>
<tr>
<td>Pressure gradient</td>
<td>pounds per square inch</td>
<td>22.621</td>
<td>kilopascals per metre (kPa/m)</td>
</tr>
<tr>
<td>Funnel viscosity</td>
<td>seconds per quart (s/qt)</td>
<td>1.057</td>
<td>seconds per litre (s/L)</td>
</tr>
<tr>
<td>Yield point</td>
<td>pounds per 100 square feet (lb/100 ft²)</td>
<td>0.48</td>
<td>pascals (Pa)</td>
</tr>
<tr>
<td>Gel strength</td>
<td>pounds per 100 square feet (lb/100 ft²)</td>
<td>0.48</td>
<td>pascals (Pa)</td>
</tr>
<tr>
<td>Filter cake thickness</td>
<td>32nds of an inch</td>
<td>0.8</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td>Power</td>
<td>horsepower (hp)</td>
<td>0.75</td>
<td>kilowatts (kW)</td>
</tr>
<tr>
<td>Area</td>
<td>square inches (in.²)</td>
<td>6.45</td>
<td>square centimetres (cm²)</td>
</tr>
<tr>
<td></td>
<td>square feet (ft²)</td>
<td>0.0929</td>
<td>square metres (m²)</td>
</tr>
<tr>
<td></td>
<td>square yards (yd²)</td>
<td>0.8361</td>
<td>square metres (m²)</td>
</tr>
<tr>
<td></td>
<td>square miles (mi²)</td>
<td>2.59</td>
<td>square kilometres (km²)</td>
</tr>
<tr>
<td></td>
<td>acre (ac)</td>
<td>0.40</td>
<td>hectare (ha)</td>
</tr>
<tr>
<td>Drilling line wear</td>
<td>ton-miles (tn•mi)</td>
<td>14.317</td>
<td>megajoules (MJ)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.459</td>
<td>tonne-kilometres (t•km)</td>
</tr>
<tr>
<td>Torque</td>
<td>foot-pounds (ft•lb)</td>
<td>1.3558</td>
<td>newton metres (N•m)</td>
</tr>
</tbody>
</table>
Introduction

In this chapter:
- The hazardous work environment of the drilling rig
- The most dangerous activities for those working in the oil and gas extraction industry
- The importance of complying with OSHA safety regulations

Working on a drilling rig is a tough, hazardous job where safety is a critical issue. A striking statistic illustrates that point: Between 2003 and 2012, there were 1,077 fatalities of oil and gas workers at U.S. job sites (fig. 1). To have an idea of how significant this number is, consider the following:
- There were approximately 450,000 workers in the industry in 2011.
- The fatality rate in the industry is several times higher than the overall rate for all U.S. industries.

Figure 1. Fatalities in the U.S. oil and gas extraction industry number, on average, over 100 per year.

People and Safety

In this chapter:
- The chain of command for rig safety
- Responsibilities of individual crew members for safety
- How rig safety programs are developed
- The role of the safety director on a rig

Less than 5% of rig accidents are caused by mechanical failure. It is people who make rig operations safe, so everyone must develop a sense for safety and practice self-improvement. Before acting, an individual must automatically consider, “Will this put anyone in danger?” Every crewmember must be ever alert to risky or unsafe situations. Being alert is the best way to avoid injury to yourself and the crew. It is critical that a new crewmember receives supervision and instruction in safe operating procedures immediately upon reporting for work. Industry data show that 60% or more of rig injuries involve people on the job less than 6 months. Even an experienced person may need supervision, especially if coming from a different type or size of rig.

Responsibility for rig safety follows the corporate chain of command. All are involved, from the operator down to the new floorhand. Depending on the contract, an operator may specify the casing and mud programs to be followed, furnish the casing, have it delivered, inspected, and specify the setting depth. If operators furnish the mud, they will control the type and weight and be responsible
No matter how well-designed the rig or how well-supervised the crew, only careful, conscientious conduct by everyone can assure safe operations. Each person should receive instructions on the proper way to perform his or her work and the use of personal protective equipment (PPE). Safety standards prohibit the wearing of rings or other jewelry and loose clothing; they also prohibit long hair on a drilling rig. All these things are subject to being caught in moving machinery.

The mandatory personal protection items worn by each crew-member include a hard hat, safety boots, gloves, and safety glasses. Proper clothing is also important.
Safe Posture

In this chapter:

• The importance of good posture for safety
• Keeping the floor clean and dry
• The safe foot stance and posture for lifting
• Getting help from other crewmembers for heavy loads
• Using mechanical help for lifting

Strains, overexertion, and back injuries are a leading cause of lost-time incidents (LTIs), or accidents that take a person off duty. When lifting, good footing is of first importance. Clean up a slick or cluttered surface before lifting; otherwise, a slip or trip in the middle of a lift can be injurious. Good balance and posture are critical. Most strains and sprains occur as a result of an awkward, off-balance stance or by overreaching. A correct lifting posture is required. Squarely face the object to be lifted with feet spread a shoulder width apart. Bend the knees and test the weight and grip; then, with the back straight, lift with the legs while holding the load close to the body (fig. 15). Do not twist the back while moving the load, and set it down the same way it was lifted. Weight lifting competitions are not allowed.

Figure 15. Recommended way in which to lift an object

Lift with your knees—
not with your back.
Offshore Transportation Safety

In this chapter:

• Special regulations that govern transportation offshore
• Safe procedures for traveling in a helicopter or boat
• Safe procedures for disembarking and boarding the rig
• Additional safety considerations for marine transport

In 2010, a blowout occurred at the Macondo Prospect off the coast of Louisiana. In response to the many fatalities among workers on the rig and the leaking of millions of barrels of oil into the Gulf of Mexico, the U.S. federal government enacted new laws governing the industry. The Bureau of Safety and Environmental Enforcement (BSEE) is the agency that oversees worker safety and enforces environmental safeguards for offshore drilling.

Someone who has worked on a land rig will find many of the safe operating procedures for an offshore rig familiar. In the challenging offshore drilling environment, however, there are additional safety considerations. So the BSEE has set regulations for such matters as the transportation of crewmembers by boat or helicopter.
Hand-Tool Safety

In this chapter:
- General safety rules for commonly used hand tools
- Special precautions for using individual hand tools
- Tips for storing tools and for transporting and working with them aloft in the derrick
- Precautions for using portable ladders

A member of a rig crew must be able to safely use a wide variety of tools. Many will be similar to home tools but more heavy duty. Keys to hand-tool safety include:
- Use the proper tool for the job.
- Inspect the tool before using it. Be sure the tool is not worn, broken, or damaged. Report damaged tools to the driller.
- Never use a tool for a task it is not intended for. Do not use a wrench for the job of a hammer, for example.
- Be certain the area is clear of people and obstacles when swinging any tool.
- Maintain a good stance so the tool does not slip. Do not overreach!
- Carry tools safely. Tools slip from pockets, so use a tool belt, especially for sharp or pointed tools.
- If you don’t know how to use a tool, ask for instructions.

Having the right tool readily available for a specific job reduces the temptation to use the wrong tool, which can cause an accident. Tool boards located around the rig provide an easy way to keep tools accessible and in good condition. Each crewmember should take the initiative, seeing that tools are not left lying around the rig, creating a hazard.
Power–Tool Safety

In this chapter:

• Types of portable tools: electric and pneumatic
• General safety rules for using portable tools on a rig
• Precautions for using air and electric tools
• Keeping portable tools clean
• Precautions to avoid misfiring tools

Portable power tools are often used around a rig. They may be pneumatic (activated by compressed air) or electrically powered. Typical injuries from power tools include cuts, burns, and electrical shocks. Eye injuries and falls also occur when using power tools. Power tools can even cause gas explosions. Falling tools can also cause injury. Many injuries can be prevented with simple precautions:

• Electrical lines on the ground or rig floor may cause someone to trip. Flag them or string them overhead.
• Do not leave power tools aloft. Moving equipment or personnel on any level may pull the power line, causing the tool to fall.
• Keep all power lines away from hot surfaces like mufflers or ones undergoing welding operations. Lines should also be kept away from gasoline, oil, and chemicals.
• Inspect all lines—air or electrical—before use. Check closely for loose connections. Any worn, frayed, or kinked areas should be promptly repaired.
• Do not disconnect a power line while a tool is in use. Loss of power can jam the tool, exposing the user to injury. Likewise, never plug in to an electrical socket or turn on the air without determining that the person using the tool is ready.
Rig-Up Safety

In this chapter:
- Dangers of rigging up
- Why rigging up is only allowed during the day
- The importance of being alert and staying out of the way
- Special precautions for raising derricks, positioning equipment, and testing engines

Lost-time injuries (LTIs) occur most often when activity on the rig is intense. The most dangerous activities are equipment repair and maintenance, routine drilling operations, tripping in and out, and rigging up and down. During rig-up, there are many hazards (fig. 26):
  - Getting caught in a pinch point
  - Getting struck by a crane, truck, load, or falling tool
  - Falling from a height
  - Becoming entangled in lines
  - Getting crushed by equipment being put into place

Figure 26. A forklift can crush a person or tip over.
Drilling Operations and Equipment Safety

In this chapter:

- Keeping drilling equipment in position
- Preventing falls of equipment and people
- Keeping things from getting entrained by equipment
- Special precautions for using drilling equipment
- Maintaining drilling line and slips to avoid accidents
- Preventing strain by using power equipment

Depending on the size of the rig, the crew usually numbers from four to six people. These people are the driller, derrickhand, motorhand, and two or three floorhands. The derrickhand is under the direct supervision of the driller; the entire crew is under the overall supervision of the rig manager (toolpusher). Offshore crews may be supplemented by a crane operator, roustabouts, a mechanic, and an electrician. Floating drill vessels employ a subsea engineer, barge master, and watch standers.

The basic crew is responsible for normal drilling operations, maintenance, and repairs of the rig. It may also run casing, handle blowout prevention, and do completion work. The crew is often assisted by contributions from many oilfield specialists: mud engineers, fishing tool operators, directional drilling operators, pressure control engineers, casing crews and cementers, and logging and perforating personnel. The operator may also employ an on-site consultant.

After drilling has reached total depth and downhole logging has been completed, a critical decision must be made. If the hole is cased and completed, will it be a commercial well that justifies the cost?
In this chapter:

- Selecting proper cables and rigging parts
- Allowing only qualified personnel to handle rigging
- Protecting the integrity of rigging for safety
- Instructions for safe handling of rigging

Rig personnel handle rigging every day, so it is important to recognize and correct unsafe rigging. All cables and rigging parts should be of good quality, size, and strength to handle the expected load (fig. 55). Check the manufacturer’s recommendations if in doubt. Splicing, socketing, and seizing of wire rope should be done by a qualified person. Eye splices must have the proper size thimbles to protect the line from sharp bends and abrasion. The U-bolt attachments on wire rope clips must be fastened to the rope with the U-bolt side on the dead, or shortened, end of the rope. Align the clips with U-bolts all on one side of the rope (lower right, fig. 55). Check and tighten the clip nuts after initial use and frequently thereafter.

All cables and rigging parts should be of sufficient quality, size, and strength to handle the expected load.
In this chapter:

- Safely starting rig engines
- Using lockout-tagout procedures during maintenance
- Alarms and automatic shutdown controls for emergencies
- Avoiding burns and exposure to exhaust
- Protecting the crew with shielding

Rig supervisors should instruct personnel in the proper operation and maintenance of the prime movers and auxiliary engines. Internal combustion engines of 30 horsepower or more should not be started by hand cranking. An external power source is usually available—one that provides compressed air or hydraulic pressure, an electrical motor, or a smaller gasoline engine. Do not start an idle engine with the multiple-engine compound by using the power from an engine that is already running. Engines or motors that start automatically should have a proper sign posted to warn of automatic operation, and no repairs to such machinery should be started unless a proper lockout-tagout procedure is followed. Positive lockout and tagout measures must be provided to ensure that an engine cannot be inadvertently started during repairs, inspection, or adjustment. Engines should be equipped with alarms and automatic shutdown controls that activate during an emergency or operational difficulties such as overheating, overspeeding, low oil pressure, or excessive vibration. Engine controls should be periodically checked and be capable of immediate shutdown of rig power in the event of personnel injury or equipment failure.
In this chapter:

- Installing pressure-relief valves on the mud tanks
- Safely performing maintenance on mud tanks
- Providing safe footing around mud pumps and tanks
- Safe procedures for mixing mud
- Personal protective equipment for mixing mud

Mud pumps provide a continuous supply of fluid under high pressure to the drill string (fig. 58). Caution should be used when working around high-pressure components. All pumps must be fitted with a pressure gauge. A plugged bit or inadvertently closed valve can create extreme pressures that will endanger all those nearby. The manufacturer provides pressure relief valves (pop-off valves) to protect the pump and discharge lines from failure. Some pumps are equipped with adjustable, automatic-reset relief valves. These types of valves allow continuous operation without resetting after pressure surges. Shear relief valves depend on shear pins sized to contain a desired pressure. Supervisors should assure that no oversize pins are used. Nothing should be done that would eliminate or restrict the operation of any safety device. Relief valves should be shielded to protect workers from flying parts in case the shear pin is broken by excess pressure.

A pressure relief valve of an approved type must be part of the discharge manifold and placed ahead of any valve on the line. Relief bypass outlets should be short, without bends, and directed away from personnel and equipment. Discharge lines should be securely anchored when run into the mud tanks. Bypass fluid should not be returned to the pump suction or wasted.
Tubulars

In this chapter:

• Staying alert when tubulars are being moved
• Avoiding injuries while handling tubulars
• Proper procedures for racking and rolling pipe
• Safely lifting equipment above the rig floor
• Using a flagger and tag lines during lifts

The handling of tubular goods can be hazardous. “Never turn your back on moving pipe” is rule number one around the drilling rig. Moving pipe deserves your full attention.

Do not leave drill pipe in the mousehole during a trip. When a stand of drill pipe is hoisted off the floor, it should be held back to keep it from swinging. The derrickhand should help break the swing of the pipe as the stand is led across the floor. Pipe should be racked by pushing against the outer face to set it back; never put hands on the back side and keep feet away from the pipe as it is set down. Always keep hands on the outside of casing, drill joints, subs, or collars. Never place hands on top of any tubular held in the slips when another joint is being stabbed. The driller should always be aware of the stabber’s hands when lowering the elevators to avoid catching them between the tubular and the elevators.

Rig Floor

Employees must always be aware of moving pipe around them.
Hazardous Energy

In this chapter:

- Selecting proper electrical parts
- Allowing only authorized personnel to install or repair them
- Grounding electrical equipment and housing it safely
- Using warning signs and guards around equipment
- General precautions to follow around electrical equipment
- Lockout-tagout procedures for electrical components

All rig wiring should be insulated to prevent short circuits caused by weather, chemicals, and rough handling. Circuits must be built of standard, properly load-rated outdoor wiring and fixtures. Equipment repairs or cutting and splicing of electrical wiring should not be attempted by unauthorized personnel. Makeshift repairs are hazardous because an underrated element anywhere in the circuit can cause problems. If spliced, wiring should be equal to the original in strength and insulation. Wiring must be installed so that it is protected from abrasion, trampling, or burning by hot surfaces. Lead-in cables from the generators to the mast or derrick must be located and protected from damage when the rig is in operations or when heavy equipment is being moved. All guards on electrical equipment should be in place and in good repair. All motors, generators, equipment, lights, panels, and electric tools must have proper grounding. All auxiliary housing on location must be grounded.
Confined Spaces Safety

In this chapter:

- Types of confined spaces
- Clearing a confined space with a hazardous atmosphere
- Preparing a confined space for the crew
- Personal protective equipment for workers
- Precautions for working in confined spaces

A confined space is considered to be any enclosure large enough for an employee to bodily enter and perform work but small enough to restrict the entry and exit of the employee (fig. 69). Confined spaces are not designed for continuous occupancy. Certain spaces are considered confined spaces if they have poor ventilation or a low oxygen level—the cellar and mud pits, for example. An authorized person such as the rig manager should test the space for oxygen deficiency, H₂S, or explosive gas before entry occurs.

Confined spaces are classified as:

- Nonpermit spaces
- Permit-required spaces

A nonpermit confined space does not contain atmospheric or other hazardous conditions with the potential to cause serious harm or death.

A permit-required space is one that:

- Contains or potentially contains a hazardous atmosphere
- Has the potential to engulf anyone who enters—with a cave-in, for example
- Has a floor or wall configuration that could trap or asphyxiate a person
- Contains any recognized, serious health hazard

Figure 69. Person being rescued from confined space
Chemical Hazards

In this chapter:

- OSHA's regulations for chemical hazards in the workplace
- Communication to employees about chemical hazards
- Understanding warning labels and material safety data sheets
- Working safely with caustic solution

The regulations of OSHA's Hazard Communication Standard (HCS) require employers to inform workers of potential chemical hazards in the workplace. Chemicals pose physical or health hazards—or both. Physical hazards are dangers to the outside of the body. Health hazards cause damage inside the body, such as a stomach cramp or nausea. Health hazards may be immediate and short-lived or they may build up gradually over time with repeated exposure.

The employer should provide training by identifying and listing potentially hazardous materials. Warning labels and safety data sheets (SDSes) must be provided (fig. 71). You should be informed on detection methods, safe work procedures, and use of PPE.

Figure 71. Safety data sheets
Well Control

In this chapter:
- The danger posed by blowouts
- Main pieces of well-control equipment
- Safely installing and operating the blowout preventers
- Detecting a well kick and circulating it out

While drilling any hole for oil or gas, the crew can encounter abnormal pressures—ones that are either higher or lower than those expected. With abnormal pressures, comes the possibility a blowout, an uncontrolled flow of fluids into the atmosphere (fig. 75) or underground into lower-pressured zones. The danger to the crew, rig, and environment is obvious, as is the economic loss of a blowout.

A blowout preventer (BOP), choke manifold, and mud-gas separator provide a means to control pressures in the well.

Figure 75. Rig blowout and fire caused by failure to control high formation pressure
Well Servicing Safety

In this chapter:

• Planning for safe well servicing with third-party firms
• Preventing blowouts and fires during well servicing
• Handling casing and staying clear during cementing
• Preventing the accidental discharge of the perforating gun

Operations such as logging, drill stem testing, cementing, perforating, and fracture treating are done by third-party well service firms that are usually under contract to the operator. The service companies have their own safety rules that must be observed by rig employees, but it is the operator’s responsibility to ensure that the service company’s operations do not endanger the drilling operation or personnel. Service company personnel make up and handle their own equipment with assistance from the crew only as needed.

The service company supervisor, operator’s representative, rig manager, and crew should conduct a safety planning session before any well service operation begins. Among points to consider are:

- Site hazards
- Hazards of the service operation
- Proper deployment of equipment and people that ensures safety and fire prevention
- Rig or equipment conditions that may affect the operation
Field Welding and Cutting Safety

In this chapter:

• Using a qualified welder for cutting and welding
• Special precautions for drilling near the hole
• General precautions for welding and cutting
• Personal protective equipment for the crew to wear

Only a qualified, experienced welder should perform welding and cutting operations. A contract welder is usually employed for this work and assisted by the rig crew. Permission and a hot work permit must be obtained before welding operations start anywhere within 150 feet (46 metres) of the borehole. Field welding is not permitted on tongs, elevators, blowout preventers, or other heat-treated equipment.

Rig personnel who assist in welding operations should observe the following general precautions:

• Unless approved by the senior site supervisor, welding and cutting should not take place during high danger periods, such as when there are well-control problems or testing is taking place.

The work area must be clean and clear of litter and combustibles.

• Rig workers should wear PPE, including goggles or a helmet (fig. 80), welders’ gloves, and fall protection equipment.

• The work area should be well ventilated, and respirators should be made available if necessary.
In this chapter:

- Training in fire prevention and suppression
- How fires burn and are extinguished
- Operation and care of fire suppression equipment
- How fire detection equipment works
- Personal fire safety equipment on a rig

Flammable materials are all over a drilling site—oil and grease, natural gas, solvents, rubber hoses, cloth, and paper. Ignition sources are common, as well. Lit cigarettes, welding torches, and sparks from motors, for example. So fire prevention, detection, and suppression are crucial to the safe operation of a drilling rig.

Everyone on a drilling rig should have training in fire prevention and take every precaution to prevent fires: Where you see a no smoking sign, for instance, don’t smoke. Anyone servicing or operating equipment that involves sparks or flames must know when and how to work safely.

All persons on a drilling rig should know what to do if they see a fire and know exactly what to do and where to go when a fire alarm sounds. Everyone should know where the rig’s fire extinguishers are and how to operate them. Especially offshore, all crewmembers depend on each other for safety in the event of a fire.
Hydrogen Sulfide Safety

In this chapter:

- Areas of the rig where hydrogen sulfide gas is encountered
- Hazards of H₂S gas
- The need to use equipment to detect H₂S
- Preventive procedures and personal protective equipment
- Emergency evacuation and first aid for gas exposure

Hydrogen sulfide is a deadly gas. Also called sour gas or sulfur gas, it is common in some areas of the oilfield. It is more deadly than carbon monoxide and almost as toxic as hydrogen cyanide. When a well is drilled into a formation containing H₂S, the gas may be circulated to the surface in the drilling or formation fluids. Several areas around the rig then become potentially dangerous. One such area is around the bell nipple. The entire circulation system—shale shakers, pits, tanks, mud lines, pumps, and other components—has a high potential for H₂S contamination. Leaks in hoses, lines, and connections can create hazardous, toxic conditions.

H₂S gas is heavier than air (having a density of 1.189 compared to 1.0 for air) so it tends to accumulate in low areas around the rig such as the cellar, ditches, and open mud troughs. Low areas are especially hazardous when there is no wind or fans to disperse the gas.

H₂S is dangerous because it is colorless and can burn or explode once in the air. Restrictions on smoking, burning, or welding must be strictly observed. It burns with a blue flame that produces another dangerous gas, sulfur dioxide, or SO₂. In low concentrations, H₂S has the odor of rotten eggs. Smell cannot be relied on, however, to detect H₂S because the gas quickly destroys the sense of smell.

The deadly gas H₂S can be hard to detect without instruments because it is colorless and, at a certain concentration, deadens the sense of smell.

Characteristics of H₂S Gas
In this chapter:

• The importance of basic first aid and CPR on rigs
• The general procedure for accidents: check, call, and care
• Handling some common, potentially serious emergencies
• Getting professional medical help quickly
• Immobilizing and transporting the victim

First aid is the immediate, on-site care given to a person who has been injured or becomes suddenly ill. It includes self-help when medical assistance is not readily available or is delayed. Drilling operations are frequently in remote locations, so professional medical care may be hours away. Knowledge of basic first aid and cardiopulmonary resuscitation (CPR) is critical because prompt and correct care can mean the difference between life and death or between rapid recovery and long hospitalization. Even minor delays in caring for an injury or sudden illness can be fatal. To ensure prompt care, the rig manager should contact local medical facilities and evacuation services soon after moving on location. Information for emergencies should then be posted in the doghouse and other designated places on the rig. All accidents, even minor ones, should be reported to the rig manager. The crew should understand that, except for very minor injuries, first aid should be followed by treatment at a medical facility.

Ideally, every employee would be trained in first aid and know what to do—and what not to do—in a medical emergency (fig. 100). With the frequent changes in drilling personnel, it may not be practical to enroll every employee in a first aid course, but there should be one person knowledgeable in first aid and CPR on each tour.
accidents. See also lost-time injuries (LTIs)
  factors increasing risk of, 39
accumulator units, 101
adjustable wrenches, 27
“Adult First Aid/CPR/AED,” 148
Air Force, 121
air hoist, 66–67
air-powered kelly spinner, 50
air-powered spinning tongs, 59
air supply equipment, 136–137
air tools, safety devices on, 34
alarm boxes, manual, 133
alcohol
  offshore installations and, 20
  use, 8, 9, 21, 22, 24
alertness, 5, 39
Allen wrenches, 27, 75
American Red Cross Manual, 148
anchor drum, 53
anti-crowning device, 51
antifouling device, 62
arcing, electrical equipment subject to, 92
artificial resuscitation. See also rescue breathing
electrical shock and, 90
atmosphere, hazardous, 94
automatic cathead, 63
automatic sprinklers, 130
bails, 61
basket-lift transfer, 23
bell nipple, 139
blade switch, 88
bleeding, 149
blowout(s)
  early warning signs of, 101
  fatalities and, 19
  risk of, 108
blowout preventer (BOP)
  about, 99, 100
  DST tool and, 107
  installation and, 100–101
  safety rules for, 104
blowout preventer stack, 100
bone fractures, 159–160. See also head injuries; spine
  injuries
BOP. See blowout preventer (BOP)
borehole, 108
bottleneck elevators, 61
brake handle, 45
brakes, drawworks and, 47
breaker switches, 87, 88, 92
breakout, 88
breathing equipment
  air supply, 136–137
  categories of, 144
  H2S gas and, 142, 143, 144
  perforated eardrum and, 140
  positive-pressure air masks, 144
bridle, 109
brushes, 30
BSEE. See Bureau of Safety and Environmental
  Enforcement (BSEE)
buddy system
  confined spaces and, 94
  H2S gas and, 142
bulbs, 89
bumper blocks, 51
bunker suit
  air supply, 136–137
  coat and pants, 134, 135
  components of, 134
  maintenance of, 136
Bureau of Safety and Environmental Enforcement
  (BSEE), 19
burn(s)
  about, 151
  chemical, 153
  electrical, 153
  first-degree, 151
  second-degree, 151
  third-degree, 151
  treatment of, 152–153
burn pit, 116
butane, 117
SAFETY ON THE RIG

cables. See rigging practices
carbon dioxide (CO2)
   air supply and, 136
   extinguishing a fire and, 121, 123
   fire suppression and, 30
carbon monoxide (CO), 136
 cardiopulmonary resuscitation. See CPR (cardiopulmonary resuscitation)
casing
   lifting of, 83
   running, 108–109
casing elevator, 61
cathead and catline
   about, 62–63
   driller and, 65
   safety rules for, 63–64
cathead spool, 62
catwalk, casing lifted from, 82, 83
caucustic solution safety, 98
cement service workers, 109
chains. See spinning chains
cheater bars, 27
chemical burns, 153
chemical hazards
   about, 95
   caustic solution safety, 98
   communication and, 95
   eye emergencies, 157
   labels and, 96
   Safety Data Sheets (SDSes) and, 97
   warning, 98
chisels
   grip and maintenance of, 29
   safety considerations, 30
choke manifolds, 101–102, 103; 104
Class-A fires, 122
Class-B fires, 123
Class-C fires, 123
Class-D fires, 122
classification of fires, 122–124
climbing device, counterbalanced, 43
closed-socket hammer wrenches, 101
clothing. See also bunker suit
   about, 14
   maintenance of, 137
CO. See carbon monoxide (CO)
Coast Guard, 126
crat and pants, 134, 135
cold-related illnesses, 155–156
collar slips, 56
combustible-gas detectors, 132
combustible metals, 124
combustion, requirements for, 120
come-along, 42
communication. See also labels/labeling; Safety Data Sheets (SDSes)
   broken or frayed wires and, 87
   chemical hazards and, 95
   communication device, two-way, 65
   compound, three-engine, 75
confined spaces
   field welding and, 112
   person being removed from, 93
   safety and, 93–94
contact lenses, 14
CO2. See carbon dioxide (CO2)
cotter pins, lockout-tagout procedure, 75
counterbalanced climbing device, 43
CPR (cardiopulmonary resuscitation)
   heart attack and, 158, 164
   hypothermia and, 156
   knowledge of, 145
CPR training, 145, 146, 148, 163
Crescent™ wrenches, 27
crew boat transportation, 22–23
crewmembers
   about, 9
   alertness and, 5
   personal protective equipment for all, 11, 16
   setting slips around drill pipe, 57
tongs and, 58
crown block, 51
cutting. See field welding and cutting
deadline, 51
deadline anchor, 53
deaths. See fatalities
degasser, 79, 80
deluge valve, 131
derrick(s). See also mast(s)
   assembly of, 38
   equipment safety, 42–46
   platforms and, 44
   wiring for, 86
derrickhand(s)
   climbing devices and, 43
   as crewmember(s), 9
   on monkeyboard, 43
   rail rope, 46
desander, 79
dies/die drivers, 58
diesel engines, 75
dope brush, 30
downhole logging, 41
drawworks
driller and, 50, 102
repairs to, 47
drill collars/drill collar subs, 82
driller
about, 8
catline lifts and, 65
drawworks and, 47, 50, 102
drilling contractor, 6
drilling crew
members of, 67
safety rules for, 10
drilling hook, 52
drilling line
drilling operation and, 54
installation of, 51
drilling mud
equipment and, 80
H₂S gas kick and, 142
stabilizers and, 82
drilling nipple, 106
drilling operations and equipment safety
about, 41–42
derrick or mast, 42–46
drilling line and, 54
rules for working safely, 67, 68
drilling rig(s)
fire prevention measures on, 137
fire threat and, 131
rule number one, 81
drilling rig mast. See mast(s)
drilling superintendent, 7
drill pipe(s)
joints, tongs and, 58, 59
setting slips around, 57
drill stem tests (DSTs)
about, 106
hydrogen sulfide H₂S gas and, 107
ignition sources and, 108
drill stem test tool, 106, 107
drill string, rotating, 66
drugs
offshore installations and, 20
use of, 8, 9, 21, 22, 24
drug testing, 9
dry powder extinguisher, 88
DSTs. See drill stem tests (DSTs)
dust, working in, 15
eardrum, perforated, 140
ear muffs, 15
electrical burns, 153
electrical circuits, 117
electrical control panels, 87
electrical equipment
Class-C fires and, 123
rules for working safely, 87–89
electrical fires, 88, 123
electrical hazards, 85–90
electrical lines, conductive materials and, 30
electrical receptacles, 87
electrical shock, human body and, 90
electrical work, screwdrivers for, 28
electric-arc welding operations, 14
electric grinders, 35
electricity, static, 117
electric logs, 108
electric tools
about, 35–36
portable, 87
saws, 36
elevator(s)
about, 61
single-joint casing pickup, 82
elevator link eyes, 61
elevator links (bails), 52, 61
EMAs. See encapsulated micron aerosol agents (EMAAs)
emergency first aid. See also treatment in the field
about, 145–147
eye emergencies, 157
rules for, 163
serious emergencies and, 163–164
supplies and equipment, 147
training, 148
emergency procedures, 143
encapsulated micron aerosol agents (EMAAs), 121
enclosures. See confined spaces
energy, hazardous, 85–92
engine(s)
about, 73–74
diesel, 75
exhaust and, 74
guards in place on
guards in place on engines, 74
entry-permit forms, 94
equipment, specialized, 15
escape device, 43
escape line, 46
exhaust manifolds/piping, 74
explosion, Class-D fires and, 124
explosion-proof containers, 117
explosion-proof fixtures, 80, 86
SAFETY ON THE RIG

exposure-related illnesses
- cold-related, 155–156
- heat-related, 154–155
extension cords, 89
extension ladders, 30
extinguishing a fire
- chain reaction, breaking, 122
- fuel, removal of, 121
- heat, removal of, 121
- oxygen, removal of, 121
extinguishing agents
- Class-D fires and, 124
- fixed systems and, 128
- portable extinguishers and, 125
- types of, 127
eye emergencies, 157
eye protection
- about, 13–14
- chisels and, 29
- electric grinders and, 35
eye splices, 69
eye wash station, 98, 157

face shields, 13, 14
fall(s). See also slipping hazards
- rotary table and, 48
- safety harnesses and, 15
fall-arrest system, 45
fastenings, platforms and ladders, 43, 44. See also wire rope fastenings
fatalities
- blowout and, 19
- causes of, 2
- statistics on, 1
field welding and cutting
- general precautions, 111–113
- protective gear, 112
files, 30
fill-up lines, 106
fingerboard, 42
fire(s). See also extinguishing a fire
- Class-A, 122
- Class-B, 123
- Class-C, 88, 123
- Class-D, 124
- classification of, 122–124
- high formation pressure and, 99
- life cycle of a, 118–120
- prevention of, 115, 116–117
- rig blowout and, 99
- risk of, 108
- science of, 137
- fire, life cycle of
  - burning, 118–119
  - burning gases, 120
  - growing and fading, 119–120
  - start of a fire, 118
fire alarms, manual, 133
fire detection and suppression
- about, 115, 138
- classification of fires, 122–124
- extinguishing a fire, 121–122
- fire detection equipment, 131–133
- fire prevention and, 116–117
- fire suppression equipment, 125–131
- fire triangle, 120
- life cycle of a fire, 118–120
fire detection equipment
- about, 131
- combustible-gas detectors, 132
- fire line automatic system, 131
- heat and smoke detectors, 132
- manual fire alarms, 133
fire extinguishers, portable
- cartridge for, 127
- dry powder, 88
- extinguishing agents, 127
- hand-held, 125
- how to use, 127
- inspection of, 128
- labeling, 126
- wheeled extinguisher, 125
fire line automatic systems, 131
fire prevention, 116–117
fire protection company, 128
fire suppression agents, 121
fire suppression equipment. See also fire extinguishers, portable
- about, 138
- automatic sprinklers, 130
- CO₂ system, 130
- extinguishing agents, 127
- fixed systems, 128
- foam system, 129
- inspection of, 128
- labeling of, 126
- once-monthly checks, 129
- water spray systems, 131
fire triangle, 120
fire watch, 112, 116
first aid. See emergency first aid, treatment in the field
- first aid kit, 147
- first-degree burns, 151
- fixed fire suppression systems, 128
- flagger, 65
flammability limit, 116
flammables
  common materials, 122
  fire classification and, 122–124
  fire prevention and, 116, 117
  liquids, gases, petroleum products, 123
  vapors, 132
flare lines, 116
flashlights, 86
floating drill vessels, 41
foam system, fire suppression, 129
folding ladders, 30
footwear, 12
forklifts, 37, 89
forms, entry-permit, 94
fractures, 159–160
friction cathead, 63, 64
frostbite
  care for, 156
  degrees of, 155
  socks and, 14
fuel, in fire triangle, 120
fuel transfer, 117
fuses, 88
gangway, telescoping, 23
gas(es). See also combustible-gas detectors; halons;
  hydrogen sulfide H₂S gas; mud-gas separators
  burning, 120
drilling mud and, 80
  flammable, 123
  investigating unusual, 116
  in mud, 80
  wellbore and, 92
gas cylinders, 94
gas kicks, 102
gasoline, 117
generators, 74, 87
Geronimo, 45, 45
GHS. See Globally Harmonized System of
  Classification and Labelling of Chemicals (GHS)
gin pole, 89
gland packing nuts, 78
glasses, 13
Globally Harmonized System of Classification and
  Labelling of Chemicals (GHS), 97
gloves
  about, 13
  hand tools and, 36
goggles, 13, 14, 29
gooseneck, 49
government regulations, 2, 6
grinders, electric, 35
guard rails, 46
guards, for rig engine and generator, 74
guidepost rollers, 60
guying system, 42
guy line anchors, 42
hair, long, 11, 16
halons
  CO₂ system and, 130
drilling areas and, 123
  extinguishing a fire and, 122
hammers, 26
hand-held fire extinguishers. See fire extinguishers,
  portable
hand-held H₂S detector, 142
hand lamps, 86
handrails, 79
“hands,” 9
hand elevators and, 61
hand tools
  brushes, 30
  chisels, 29–30
  files, 30
  general rules for, 31
  hammers, 26
  pliers, 27
  safety, keys to, 25
  screwdrivers, 28
  shovels, 30
  special rules for, 31
  storage of, 26
  wrenches, 27, 34, 101
hard hats, 12
hats, 12
hazard(s). See also chemical hazards
  electrical, 85–92
  health, 95
  physical, 95
Hazard Communication Standard (HCS), 95, 97
hazardous atmosphere, confined spaces and, 94
hazardous energy. See also wire(s)
  about, 85, 92
  electrical hazards, 85–92
  lockout-tagout, 90–91
head injuries, 161–162
health hazards, 95
hearing protection gear, 15, 74
heart attack, 158
heat, in fire triangle, 120
heat cramps, 154
heat detectors, 132
heaters, rig, 116
heat exhaustion, 154
heat-related illnesses, 154–155
heat stroke, 154
heat-treated equipment, field welding and, 111
heavy lifting equipment, 18
helicopter transportation, 21–22
heliport, 20
high formation pressure, 99
high-pressure choke manifold. See choke manifolds
high-pressure pulsation dampeners, 101
high voltage panels, 87
hoisting line
about, 53
even wear on, 54
rotating drill string and, 66
hoisting systems, rules for working safely, 68
hook(s)
about, 52
traveling block and, 65
hook-on personnel, 70
hopper, mixing, 79
horseplay, 8, 9
hot work permit, 111, 116
housekeeping, mud pumps and, 78
H₂S. See hydrogen sulfide H₂S gas
hydrocarbon, molecules of, 118
hydrogenated hydrocarbon gases. See halons
hydrogen sulfide H₂S gas
about, 139
blower fans and, 109
breathing equipment and, 142, 143, 144
characteristics of, 139
DST tool and, 107
emergency procedures, 143, 157
eye emergencies, 157
hand-held detector for, 142
medical considerations and, 140–141
odor of, 139, 140
ppm (parts per million), 140
precautions against, 142, 144
respirators and, 15
toxicity of, 141
hypothermia
about, 155
care for, 156
ignition sources, 115
ignition temperature, 118
injured person, transportation of, 162
injury. See also lost-time injuries (LTIs), common causes of, 2, 4
inspection, portable extinguishers, 128
intoxicants, 24
jacks, 39
jewelry, 11, 16, 89
job safety analysis (JSA) program, 6, 7
JSA. See job safety analysis (JSA) program
junction boxes, 89
kelly, 50
kelly slide, 50
kelly spinner, air-powered, 50
keyways/keys, 47
kick(s)
actions to take, 102
circulating out a, 104
gas, 102
H₂S gas and, 142
preliminary events, 101
symptoms of, 104
kill lines, 106
labels/labeling
chemical hazards, 96
fire extinguishers and, 126
fire prevention and, 117
high voltage panels, 87
lockout-tagout and, 91
pictograms used on, 96
warning, 95, 96
ladders, portable, 30, 43
leaks, testing for, 117
leg splint, anatomical, 160
life cycle of a fire. See fire, life cycle of
life jackets, 22
lifelines, 45, 94
lifting, 17–18
lifting chains, certified, 70
lighting, 86
line ends, 58
line spoolers, 54
link eyes, 61
liquids, flammable, 117, 123
liquefied petroleum, 117
lockout-tagout procedure
about, 90–91
engines and, 73, 76
lost-time injuries (LTIs), 17, 37
LTIs. See lost-time injuries (LTIs)
Macondo Prospect, 19
manual fire alarms, 133
manual slips, 56
mast(s)
  equipment safety, 42–46
  pipe-racking support, 43
  pipe shifting in, 43
  portable telescoping, 42
  raising, 38
  rules for working in, 67
  wiring for, 86
matches, 116
material safety data sheets (MSDSes), 97
mechanical help, heavy lifting and, 18
medical conditions, 141
metal(s)
  combustible, 124
  hydrogen sulfide (H₂S) and, 140
methane, 118
mixing hopper, 79
monkeyboard, derrickhand on, 43
motors, electric, 87
motor vehicle accidents, 161–162
mousehole, 48
MSDSes. See material safety data sheets (MSDSes)
mud. See drilling mud
mud-gas separators, 102, 103
mud guns, 79–80
mud levels, monitoring, 109
mud mixing, 15, 79
mud pumps
  about, 77–78
  single-acting triplex, 78
mud tanks
  equipment for, 79
  tank safety, 79–80
mufflers, 74
multi-rig contractors, 6
National Fire Protection Association (NFPA), 122
NFPA. See National Fire Protection Association (NFPA)
nose levels. See bearing protection gear
nonpermit spaces, 93
nonsmoking areas, 116
Occupational Safety and Health (OSHA)
  government regulations and, 2, 3
  Hazard Communication Standard (HCS), 95, 97
odor
  fire prevention and, 116
  H₂S gas and, 140
offshore platform, basket-lift transfer to, 23
offshore rigs, water spray systems, 131
offshore transportation safety
  about, 24
  BSEE and, 19
    crew boat transportation, 22–23
    helicopter transportation, 21–22
  heliport and, 20
open-hole wireline services, 108
operator, 5–6
OSH. See Occupational Safety and Health (OSH) Act of 1970
OSHA. See Occupational Safety and Health Administration (OSHA)
out-of-service equipment. See lockout-tagout procedure
overexertion, avoidance of, 18
overreaching, 17
oxidation, 118, 137
oxygen
  extinguishing a fire and, 121
  in fire triangle, 120
  hydrocarbon molecules and, 118
painting, 15
pants and coat, 134, 135
paraformaldehyde, 98
perforating, well servicing and, 110
permit, hot work, 111, 116
permit-required spaces, 93
personal items, prohibited, 11
personal protective equipment (PPE)
  about, 138
  instructions for, 11
  specialized, 15
  for welders, 112
personal safety equipment. See also breathing equipment; personal protective equipment (PPE)
  about, 134
  bunker suit, 134–137, 137
  coat and pants, 134, 135
  maintenance of, 137
  mandatory items, 11, 12
  radiant heat and, 135
personnel basket, 23
petroleum products, flammable, 123
physical hazards, 95
pickup elevator, 61
pictograms, 96
SAFETY ON THE RIG

pinch points, 37, 39
pipe(s). See also casing; drill pipe(s)
   exhaust, 74
   fire prevention and, 117
   moving, rule number one, 81
   racked, 82
   running, with spinning chain, 60
   stands of, 42, 43
pipeline supports, 40
pipe rack bin, 82
pipe-racking
   area for, 48
   support, 43
pipe racks, 82
pipe shifting, 43
pipe slips, 56
pipe tongs, 58–59
pipe truck, 82
platforms, 44
pliers, 27
pneumatic tube fire detector, 131
pollution prevention, 23
portable fire extinguishers, 125
portable ladders, 30
portable telescoping masts, 42
posture, 17–18
power generation
   compound, 75
   engines, 73–76
power lines, 89
power rotary slips, 56
power tongs, 58, 59
power tools
   air tools, 34
   confined spaces and, 94
   electric tools, 35–36
   safety rules for, 33–36
   types of, 36
PPE. See personal protective equipment (PPE)
preflight emergency briefing, 22
propane, 117
pull lift, 42
pulse, checking for, 148, 156
racked pipe, 82
radiant heat
   bunker suit and, 135
   burning fire and, 118
   radiation feedback, 119
rathole, 48
reflector, rig lighting and, 86
refueling, 117
relief valves, mud pumps and, 77–78
repetitive jobs, 9
reporting. See communication
rescue breathing, 148, 156, 158
respirators, 15
rig. See drilling rig(s)
rig blowout, 99
rig components, checking, 109
rig engine and generator, guards in place on, 74
rig floor
   moving pipe to, 82
   rotary table and, 48
   safety harnesses and, 45
   slips and falls on, 48
   tubulars and, 81–82
rigging practices, 69–72
rigging up
   about, 38–40
   hazards, 37–38, 40
   rules for safe, 40
rig stairs, 116
rig housing, 116
rig inspections, 7
rig lighting, reflector for, 86
rig manager, 7
rig owner, 6
rig safety list, 7
rig stairways, 43
rod basket, brake handle and, 45
rotary clutch, 58
rotary helpers, 9
rotary hose, 49
rotary table, 48
rotating parts, shielding for, 76
rotating systems, rule for working safely, 68
roughnecks, 9
rubber gloves, 13
rubber goods, 89
rule number one, 81
running casing. See casing
running pipe. See pipe(s)
safety belt(s)
   confined spaces and, 94
   rig floor and, 45
Safety Data Sheets (SDSes)
   about, 98
   example of, 97
   providing, 95, 97
safety engineer, 6
safety glasses, 13
safety hard hats, 12
safety harnesses
falls and, 15
platform and, 46
rig floor and, 45
safety meeting, 102, 110
safety program, 6
safety shoes and boots, 12
sand, drilling mud and, 80
sandline(s), 54
sandline guards, 47
saws, electric, 36
SCBA (self-contained breathing apparatus), 94
screwdrivers, 28
SDSes. See Safety Data Sheets (SDSes)
second-degree burns, 151
seizing of wireline rope, 54, 55
self-contained breathing apparatus (SCBA), 94
shale shaker, 79, 80
sheave guards, 52
sheaves, crown block showing, 51
shield, chisel use and, 29
shock
about, 149
electric, human body and, 90
fractures and, 160
symptoms of, 150
treatment for, 150
shovels, 30
signage. See labels/labeling
silt, drilling mud and, 80
single-acting triplex mud pumps, 78
site hazards, 38, 105
sledge hammers, 26, 78
slings, 70
slip(s)
function of, 56
manual, 56
power rotary, 56
setting, around drill pipe, 57
slip-and-cut program, 54
slipping hazards. See also fall(s)
mud pumps and, 78
rig floor and, 48
smoke, investigating unusual, 116
smoke detectors, 132
smoking, 115, 116
smoking material, 116
snakebite, 161
snakebite kit, 161
snubbing line, 50
SO₂, 141
sour gas. See hydrogen sulfide H₂S gas
spark-arresting devices, 74
specialized equipment, 15
spine injuries, 161–162
spinning chains
about, 60
kelly spinner and, 50
spinning tongs, air-powered, 59
splash-proof goggles, 14
splints, 159, 160
spot detectors, 132
spray painting, 15
spreader bar, 109
sprinklers, automatic, 130
stabbing board, 46, 109
stabilizers, 54, 83
stairways, rig, 45
static electricity, 117
sulfur gas. See hydrogen sulfide H₂S gas
swivel assemblies, traveling blocks and, 52
tag line, 66, 82
tagout. See lockout-tagout procedure
tail rope, 46
tank safety, 79–80
telelescoping ganway, 23
telelescoping masts, 42
test line, 106
test tool, drill stem, 106, 107
thimbles, 69
third-degree burns, 151
third-party well service firms, 105
tie-down anchor, 53
tie-off lanyards, 45
tinkerbell line, 45
tongs. See pipe tongs
tong safety lines, 46
ton-miles (megajoules) logged, 54
tool(s). See also hand tools; power tools
matching of sizes of, 29
used overhead, 45
tool board, 26
toolpusher. See rig manager
transfer capsule, 23
transformer banks, 87, 92
transportation. See also offshore transportation safety,
jailed persons, 162
traveling block(s)
  bumper blocks and, 51
  hook and, 65
  sheave guards and, 52
  swivel assemblies and, 52

treatment in the field
  bleeding, 149
  burns, 151–153
  exposure-related illnesses, 154–156
  eye emergencies, 157
  head and spine injuries, 161–162
  heart attack, 158
  snakebite, 161
  unconscious victims, 148

trench foot, 14
triangle, fire, 120
tripping hazards, 80
tripping out the drill string, 109
tripping the test string out of the hole, 108
tubing board, brake handle and, 45
  tubulars, 81–84. See also casing; pipe(s)
turnback rollers, 54

U-bolt attachments, 69
unconscious victims, 148
U.S. Air Force, 121

vapors, flammable, 132
vapor testers, 116
V-belts, 75
V-door
  casing lifted to, 83
  elevators and, 61
  safety chain, 82
vise, use of, 30

walkways, 79
warning labels, 98, 99
water hazards, electrical equipment and, 88, 92
water pumps, 109
water spray systems, 131
weight lifting competitions, 17

welding. See also field welding and cutting
  eye protection and, 14
  protective gear for, 112
  welding hoses, 94
wellbore
  electrical equipment and, 92
  illumination of, 86
well control
  about, 99
  blowout preventer (BOP), 99, 100–101
  choke manifolds, 101–102, 103
  equipment, 99, 104
  safety rules for, 104
well kick. See kick(s)
well-pressure control, high-pressure choke manifold for, 103
well servicing safety
  about, 105–106
  drill stem tests (DSTs), 106–108
  open-hole wireline services, 108
  perforating, 110
  running casing, 108–109
  safety rules for, 110
wheelie extinguisher, 125
wickers, 54, 58
winch line, 89
wire(s). See also hazardous energy
  broken or frayed, 87
  Class-C fires and, 123
  ground, 89
wireline(s)
  air hoist and, 66
  metal objects and, 54
  wireline rope, seizing of, 54, 55
  wireline services, open-hole, 108
  wire rope ends, 63
wire rope fastenings
  clips, minimum number of, 71
  rope strength and, 70
wrenches
  about, 27
  closed-socket hammer, 101
  impact, 34
To obtain additional training materials, contact:

PETEX
THE UNIVERSITY OF TEXAS AT AUSTIN
PETROLEUM EXTENSION SERVICE
J.J. Pickle Research Campus
10100 Burnet Road, Bldg. 2
Austin, TX 78758
Telephone: 512-471-5940
or 800-687-4132
FAX: 512-471-9410
or 800-687-7839
E-mail: petex@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex

To obtain information about training courses, contact:

PETEX
LEARNING AND ASSESSMENT CENTER
THE UNIVERSITY OF TEXAS
4702 N. Sam Houston Parkway West, Suite 800
Houston, TX 77086
Telephone: 281-397-2440
or 800-687-7052
FAX: 281-397-2441
E-mail: plach@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex