The Drawworks and the Compound
ROCKY DRILLING SERIES

Unit I: The Rig and Its Maintenance
Lesson 1: The Rotary Rig and Its Components
Lesson 2: The Bit
Lesson 3: Drill String and Drill Collars
Lesson 4: Rotary, Kelly, Swivel, Tongs, and Top Drive
Lesson 5: The Blocks and Drilling Line
Lesson 6: The Drawworks and the Compound
Lesson 7: Drilling Fluids, Mud Pumps, and Conditioning Equipment
Lesson 8: Diesel Engines and Electric Power
Lesson 9: The Auxiliaries
Lesson 10: Safety on the Rig

Unit II: Normal Drilling Operations
Lesson 1: Making Hole
Lesson 2: Drilling Fluids
Lesson 3: Drilling a Straight Hole
Lesson 4: Casing and Cementing
Lesson 5: Testing and Completing

Unit III: Nonroutine Operations
Lesson 1: Controlled Directional Drilling
Lesson 2: Open-Hole Fishing
Lesson 3: Blowout Prevention

Unit IV: Man Management and Rig Management

Unit V: Offshore Technology
Lesson 1: Wind, Waves, and Weather
Lesson 2: Spread Mooring Systems
Lesson 3: Buoyancy, Stability, and Trim
Lesson 4: Jacking Systems and Rig Moving Procedures
Lesson 5: Diving and Equipment
Lesson 6: Vessel Inspection and Maintenance
Lesson 7: Helicopter Safety
Lesson 8: Orientation for Offshore Crane Operations
Lesson 9: Life Offshore
Lesson 10: Marine Riser Systems and Subsea Blowout Preventers
The Drawworks and the Compound

Unit I, Lesson 6
First Edition

By Kate Van Dyke

Published by
PETROLEUM EXTENSION SERVICE
Continuing Education
The University of Texas at Austin
Austin, Texas

in cooperation with
INTERNATIONAL ASSOCIATION
OF DRILLING CONTRACTORS
Houston, Texas

1995
Contents

Figures \(v \)

Foreword \(vii \)

Acknowledgments \(ix \)

Units of Measurement \(x \)

Introduction \(1 \)

The Hoisting System \(2 \)
- Derricks and Masts \(4 \)
- Blocks and Drilling Line \(4 \)
- Drawworks \(5 \)
- To summarize \(6 \)

Components of the Drawworks \(7 \)
- Frame \(9 \)
- Drum \(9 \)
- Catshaft \(10 \)
- Transmission \(10 \)
- Rotary Drive Countershaft \(11 \)
- Brakes \(11 \)
- To summarize \(12 \)

Getting Power to the Drawworks \(13 \)
- Mechanical and Electric Drives \(13 \)
- Comparison of Electric and Mechanical Drives \(15 \)
- To summarize \(16 \)

Transmissions \(17 \)
- Compounding Transmission \(17 \)
- Design of the Compound \(21 \)
- Selective Transmission \(26 \)
- To summarize \(30 \)
- Construction of Chains and Sprockets \(31 \)
- To summarize \(40 \)
- Installing Chain \(41 \)
- To summarize \(46 \)
- Lubrication of Chain-and-Sprocket Drives \(47 \)
- To summarize \(52 \)
- Maintenance of Chain-and-Sprocket Drives \(53 \)
- To summarize \(60 \)

Clutches \(61 \)
- Locations \(61 \)
- Positive Clutches \(62 \)
- Friction Clutches \(64 \)
- Overrunning Clutches \(66 \)
- Installation \(67 \)
- Maintenance \(68 \)
- To summarize \(69 \)
1. Windlass
2. Hoisting with a pulley and line
3. Hoisting system
4. Drawworks
5. Drawworks with guards removed
6. Drawworks drum
7. Prime movers and compound in a mechanical drive
8. Diesel engine and generator in an electric drive system
9. Compound for two engines
10. Hydraulic torque converter
11. Waterwheel
12. Hydraulic coupling and torque converter
13. View of the compound from above
14. Sprocket
15. Chain-and-sprocket drive
16. Multistrand drives
17. Gears
18. Power flow diagram of the selective transmission
19. Roller links and pin links
20. Roller chain
21. Connector links
22. Offset link
23. Multistrand chain
24. Dimensions of a link
25. Broken pin
26. Broken link plate
27. Chain case and chain guard
28. Measuring the catenary on a chain
29. Chain with too much slack
30. Angular misalignment
31. Offset misalignment
32. Checking for misalignment and levelness of shafts
33. Cross section of two-strand chain showing lubrication
34. Drip lubrication
35. Oil bath lubrication
36. Slinger disk lubrication
37. Pressure lubrication
38. Best location to apply lubrication
39. Measuring chain for elongation
40. Worn sprockets
41. Positive clutches
42. Friction clutches
43. Overrunning clutch
44. Main (mechanical) brake
45. Braking capacity increases from the live end to the dead end 73
46. Comparing the diameter of the drum to the rims 74
47. Comparing the width of the brake band 75
48. Angle of wrap of 270° 75
49. Cross section of the brake rim 76
50. Checking the band for roundness 80
51. Measuring scoring in the brake rim 82
52. Hydrodynamic brake 86
53. Electrodynamic brake 88
54. The catshaft, catheads, and sand (coring) reel from the rear of the drawworks 91
55. Air tugger 93
56. Grease fitting locations 97

Tables

1. Common chain sizes 36
2. Maximum chain speeds for different lubrication methods 48
3. Elongation limits for chain 54
4. Roller chain troubleshooting guide 57
For many years, the Rotary Drilling Series has oriented new personnel and further assisted experienced hands in the rotary drilling industry. As the industry changes, so must the manuals in this series reflect those changes.

The revisions to both text and illustrations are extensive. In addition, the layout has been “modernized” to make the information easy to get; the study questions have been rewritten; and each major section has been summarized to provide a handy comprehension check for the student.

petex wishes to thank industry reviewers—and our readers—for invaluable assistance in the revision of the Rotary Drilling Series. On the petex staff, Deborah Caples designed the layout; Doris Dickey proofread innumerable versions; Sheryl Horton saw production through from idea to book; Ron Baker served as content editor for the entire series.

Although every effort was made to ensure accuracy, this manual is intended to be only a training aid; thus, nothing in it should be construed as approval or disapproval of any specific product or practice.

Kathy Bork
The revising of the 1982 edition of *The Hoist* into this new edition entitled *The Drawworks and the Compound* was a challenging journey. My thanks to several people who generously gave of their time and expertise and provided drawings, photos, and written resources: Ken Fischer of IADC; Wes Morrow of National Oilwell; Otis Danielson, retired; Dick Evans-Lombe of Diamond Chain Co.; and Kent Greenwald of Twin Disc.

Thanks also to eagle-eyed reviewers of the draft: John Altermann of Reading and Bates, Jim Arnold of Salem Investment, Joey Hopewell of Delta Drilling, and Ken Fischer.

Finally, thanks to the director of PETEX, Ron Baker for his good-humored explanations of convoluted reference material, to Sheryl Horton for providing referrals and acting as a sounding board, to Jonell Clardy for new illustrations, and to Terry Gregston for new photographs for this edition.

Kate Van Dyke
Units of Measurement

Throughout the world, two systems of measurement dominate: the English system and the metric system. Today, the United States is almost the only country that employs the English system.

The English system uses the pound as the unit of weight, the foot as the unit of length, and the gallon as the unit of capacity. In the English system, for example, 1 foot equals 12 inches, 1 yard equals 36 inches, and 1 mile equals 5,280 feet or 1,760 yards.

The metric system uses the gram as the unit of weight, the metre as the unit of length, and the litre as the unit of capacity. In the metric system, for example, 1 metre equals 10 decimetres, 100 centimetres, or 1,000 millimetres. A kilometre equals 1,000 metres. The metric system, unlike the English system, uses a base of 10; thus, it is easy to convert from one unit to another. To convert from one unit to another in the English system, you must memorize or look up the values.

In the late 1970s, the Eleventh General Conference on Weights and Measures described and adopted the Système International (SI) d’Unités. Conference participants based the SI system on the metric system and designed it as an international standard of measurement.

The Rotary Drilling Series gives both English and SI units. And because the SI system employs the British spelling of many of the terms, the book follows those spelling rules as well. The unit of length, for example, is metre, not meter. (Note, however, that the unit of weight is gram, not gramme.)

To aid U.S. readers in making and understanding conversion to the SI system, we include the following table.
English-Units-to-SI-Units Conversion Factors

<table>
<thead>
<tr>
<th>Quantity or Property</th>
<th>English Units</th>
<th>Multiply English Units By</th>
<th>To Obtain These SI Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length, depth, or height</td>
<td>inches (in.)</td>
<td>25.4</td>
<td>millimetres (mm)</td>
</tr>
<tr>
<td></td>
<td>feet (ft)</td>
<td>2.54</td>
<td>centimetres (cm)</td>
</tr>
<tr>
<td></td>
<td>yards (yd)</td>
<td>0.9144</td>
<td>metres (m)</td>
</tr>
<tr>
<td></td>
<td>miles (mi)</td>
<td>1609.344</td>
<td>kilometres (km)</td>
</tr>
</tbody>
</table>

| Hole and pipe diameters, bit size | inches (in.) | 25.4 | millimetres (mm) |

| Drilling rate | feet per hour (ft/h) | 0.3048 | metres per hour (m/h) |

| Weight on bit | pounds (lb) | 0.445 | decanewtons (dN) |

| Nozzle size | 32nds of an inch | 0.8 | millimetres (mm) |

<table>
<thead>
<tr>
<th>Volume</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>1 ft</td>
<td>0.3048 m</td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>1 in</td>
<td>25.4 mm</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>1 ft²</td>
<td>0.0929 m²</td>
<td></td>
</tr>
<tr>
<td>Mass (weight)</td>
<td>1 lb</td>
<td>0.4536 kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 ton</td>
<td>907.2 kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 bbl</td>
<td>1638.7 kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 gal</td>
<td>3.785 kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 g</td>
<td>2.835 kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 bbl/ton</td>
<td>927.2 kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 m³</td>
<td>33814 lb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 ft³</td>
<td>28316 kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 in³</td>
<td>16.4 gal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 cm³</td>
<td>16.4 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 m³</td>
<td>10527 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 gal</td>
<td>3785 kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 bbl</td>
<td>907.2 kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 gal/stroke</td>
<td>28.316 kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 in³/stroke</td>
<td>0.0164 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 cm³/stroke</td>
<td>0.0164 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 m³/stroke</td>
<td>0.0353 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 ft³/stroke</td>
<td>0.0353 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 in³/stroke</td>
<td>0.0164 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 cm³/stroke</td>
<td>0.0164 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 m³/stroke</td>
<td>0.0353 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 ft³/stroke</td>
<td>0.0353 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 in³/stroke</td>
<td>0.0164 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 cm³/stroke</td>
<td>0.0164 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 m³/stroke</td>
<td>0.0353 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 ft³/stroke</td>
<td>0.0353 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 in³/stroke</td>
<td>0.0164 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 cm³/stroke</td>
<td>0.0164 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 m³/stroke</td>
<td>0.0353 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 ft³/stroke</td>
<td>0.0353 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 in³/stroke</td>
<td>0.0164 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 cm³/stroke</td>
<td>0.0164 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 m³/stroke</td>
<td>0.0353 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 ft³/stroke</td>
<td>0.0353 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 in³/stroke</td>
<td>0.0164 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 cm³/stroke</td>
<td>0.0164 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 m³/stroke</td>
<td>0.0353 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 ft³/stroke</td>
<td>0.0353 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 in³/stroke</td>
<td>0.0164 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 cm³/stroke</td>
<td>0.0164 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 m³/stroke</td>
<td>0.0353 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 ft³/stroke</td>
<td>0.0353 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 in³/stroke</td>
<td>0.0164 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 cm³/stroke</td>
<td>0.0164 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 m³/stroke</td>
<td>0.0353 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 ft³/stroke</td>
<td>0.0353 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 in³/stroke</td>
<td>0.0164 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 cm³/stroke</td>
<td>0.0164 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 m³/stroke</td>
<td>0.0353 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 ft³/stroke</td>
<td>0.0353 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 in³/stroke</td>
<td>0.0164 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 cm³/stroke</td>
<td>0.0164 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 m³/stroke</td>
<td>0.0353 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 ft³/stroke</td>
<td>0.0353 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 in³/stroke</td>
<td>0.0164 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 cm³/stroke</td>
<td>0.0164 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 m³/stroke</td>
<td>0.0353 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 ft³/stroke</td>
<td>0.0353 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 in³/stroke</td>
<td>0.0164 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 cm³/stroke</td>
<td>0.0164 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 m³/stroke</td>
<td>0.0353 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 ft³/stroke</td>
<td>0.0353 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 in³/stroke</td>
<td>0.0164 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 cm³/stroke</td>
<td>0.0164 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 m³/stroke</td>
<td>0.0353 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 ft³/stroke</td>
<td>0.0353 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 in³/stroke</td>
<td>0.0164 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 cm³/stroke</td>
<td>0.0164 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 m³/stroke</td>
<td>0.0353 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 ft³/stroke</td>
<td>0.0353 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 in³/stroke</td>
<td>0.0164 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 cm³/stroke</td>
<td>0.0164 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 m³/stroke</td>
<td>0.0353 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 ft³/stroke</td>
<td>0.0353 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 in³/stroke</td>
<td>0.0164 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 cm³/stroke</td>
<td>0.0164 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 m³/stroke</td>
<td>0.0353 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 ft³/stroke</td>
<td>0.0353 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 in³/stroke</td>
<td>0.0164 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 cm³/stroke</td>
<td>0.0164 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 m³/stroke</td>
<td>0.0353 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 ft³/stroke</td>
<td>0.0353 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 in³/stroke</td>
<td>0.0164 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 cm³/stroke</td>
<td>0.0164 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 m³/stroke</td>
<td>0.0353 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 ft³/stroke</td>
<td>0.0353 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 in³/stroke</td>
<td>0.0164 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 cm³/stroke</td>
<td>0.0164 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 m³/stroke</td>
<td>0.0353 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 ft³/stroke</td>
<td>0.0353 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 in³/stroke</td>
<td>0.0164 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 cm³/stroke</td>
<td>0.0164 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 m³/stroke</td>
<td>0.0353 ft³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 ft³/stroke</td>
<td>0.0353 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 in³/stroke</td>
<td>0.0164 ft³</td>
<td></td>
</tr>
</tbody>
</table>
The Drawworks and The Compound
Introduction

The drawworks is a part of the system that rotary drilling rigs use for hoisting, or lifting, the drill stem and casing out of the hole. The earliest hoist, a windlass or winch, was a simple drum, or spool, sitting horizontally between two posts with one end of a rope attached to it (fig. 1). The other end of the rope was attached to something a person wanted to lift, such as a bucket. When someone turned the drum with a crank, the rope wound around the drum and lifted the bucket. The windlass enabled people to lift a heavy load of water, for instance, much more easily than they could have by pulling the bucket straight up. Of course, enterprising laborers were always looking for power greater than human strength to turn the drum and hoist heavier loads, and they used animals and, eventually, engines for the purpose.

Early rigs used steam engines to power the hoist. Today they use diesel engines and electric motors. But the basic principle of using a mechanical device to do the work of lifting continues to be the basis of hoisting.

Figure 1. Windlass
The Hoisting System

The hoisting system of a drilling rig is a collection of machines that work together. Broadly speaking, a simple machine does one of the following things:

1. It converts energy from one form to another.
 Energy comes in several forms. Everything that moves has mechanical energy, and mechanical energy is the type most important to the hoisting system. Some other types of energy are heat, light, and electricity. An example of a machine that converts energy is a generator, which turns mechanical energy into electricity.

2. It transfers energy from one place to another.
 The steering wheel and its linkages are a machine that transfers mechanical energy (motion) from the driver's arm to the wheels of a car.

3. It controls energy.
 A machine can control mechanical energy in three ways to make it more usable: (a) switch it on and off. A clutch in a car interrupts the power from the engine to the wheels so that you don't have to turn off the engine at a stoplight; (b) change its direction. A pulley changes the direction of motion of a rope from linear (in a straight line) to rotary (in a circle) and back again (fig. 2); (c) change its power. Power is a combination of force and speed. Force and speed are always related—a machine that increases one will decrease the other. When you are driving on a flat road, stepping on the gas in high gear makes the car move faster—increases its speed. But when going up a hill, you change to a lower gear so that stepping on the gas increases the force instead of the speed. Gears are one type of machine for changing force and speed relationships.

A complex machine, like the hoisting system, does all of these kinds of work. It helps to think of the hoisting system as a complex machine made up of several other complex machines. Each of these in turn is made up of simpler machines that do one of the basic kinds of work described above.
Components of the Drawworks

Most of the rest of this book will describe the components of the drawworks, how they are constructed and powered, and what they do. The people who work with the drawworks must be able to operate and maintain it well so that the machinery lasts as long as possible and is safe to use.

Figure 5a shows a front view of a drawworks, with the coverings of the frame removed:

1. driller’s console and brake lever
2. low drum drive
3. main brake
4. drum
5. high drum drive
6. catshaft and optional sand reel
7. rotary drive countershaft (optional)
8. auxiliary brake

The back of the drawworks is sometimes called the power side because it is the side nearest the engines that supply power to the drawworks (see Getting Power to the Drawworks). Figure 5b shows the uncovered back of the drawworks:

1. high drum drive
2. electric motors
3. drum
4. optional sand reel
5. catshaft drive
6. low drum drive
7. output shaft
8. input shaft

The chains in the rear are part of the transmission.
Getting Power to the Drawworks

Power for running the drawworks, and therefore the whole hoisting system, comes from the rig’s prime movers. The prime movers are the basic power source. Most rigs use two to four internal-combustion engines as prime movers. These are the same type of engine that a car has, but rig engines are much bigger and more powerful. Most use diesel fuel because a diesel engine has more turning power, or torque, than a gasoline engine. Torque is important because the engine directly spins a shaft to produce mechanical energy that powers everything else.

Engine power is then transmitted to run the various working parts of the rig in one of two ways. A mechanical-drive rig uses a compound, a mechanical transmission made up of sprockets and chains (fig. 7). On an electric-drive rig, the prime movers drive generators mounted right on each diesel engine (fig. 8). A generator converts the mechanical energy from the engine shaft into electricity. The electricity then flows through electric cables to electric motors attached to the drawworks and other parts of the rig that need power. Each motor directly powers one of these parts (see electric motors in fig. 5b).
Transmissions

Rotating shafts are the basis of a transmission. The rest of the transmission consists of an arrangement of mechanical parts, such as gears, sprockets and chains, belts and pulleys, and clutches, that connect the rotating shafts to each other. All together these parts constitute a machine that transmits power from a power source to another machine to make it work.

On a mechanical-drive rig, a compounding transmission, or compound, sends power from the engines to the drawworks and the rotary table, and sometimes to the mud pumps. Electric-drive rigs, where the engines run generators, do not have a compound. Here, the cables transmit electric power to motors near the components that need it.

Once the drawworks receives power from either the compound or electric motors, it must have its own system for sending that power to its various parts. A selective transmission does this job, allowing the driller to select how the power is distributed (torque/speed combinations) to various components of the drawworks. The drawworks on both mechanical-drive and electric-drive rigs have a selective transmission.

Many rigs need more than one prime mover to provide enough power, so in a mechanical-drive rig, the compounding transmission combines, or compounds, the energy from two to four engine shafts to make them act as one power source (fig. 9). The output shafts from the engines do not connect directly to the compound, however. Between each rotating shaft and the compound is either a torque converter or a hydraulic coupling to smooth the transfer of power.
Clutches

Clutches are the components of a mechanical assembly that connect or disconnect driving shafts from driven shafts. When a clutch is engaged, it makes the connection so that the driving shaft moves the driven shaft. When a clutch is disengaged, it breaks such a connection. Then, even though the driver continues to move, the driven shaft stops moving. A clutch works like an on-off switch for the transmission.

The hoisting system has clutches wherever two drives are connected and the driller needs to be able to disconnect them (see fig. 18). An exception to this is when a hydraulic coupling or a torque converter replaces the mechanical clutch. Some of the places that need clutches are—

1. between the compound and the mud pumps;
2. between the compound and the selective transmission (master clutch);
3. inside the selective transmission, for example, to the high and low drum drives (high clutch and low clutch), to the sand reel;
4. between the selective transmission and the rotary drive.

The type of clutch used in each location depends on its position in the machinery, the space available, the conditions under which it must function, the possibility for misalignment, and the work that must be done. Three types of clutches in the drawworks are the positive clutch, the friction clutch, and the overrunning clutch.
The main brake is crucially important to a drilling rig because it slows or stops the drum. It is also called a mechanical brake, because it uses only mechanical energy rather than electricity or water power to work. The crew must adjust it, service it, and reline it regularly and should therefore be thoroughly familiar with its construction and operation.

Figure 44 shows the main brake. The figure does not include the drum and its rims, which are also a part of the brake, so that the other parts are easier to see. The bands wrap around the rims of the drum and have a lining of brake blocks to increase friction. The driller applies the brake by pulling down on the brake lever, which is next to the console.

The drawworks drum is just a cylinder to start with. The manufacturer bolts steel rims to the ends of the cylinder that make it into a spool, and these rims are half of the mechanical brake (see fig. 6). The rims are also called flanges. These flanges have a hardened layer on the surface that does not wear out quickly.

The other half of the brake is the brake bands. These are two flexible steel bands that wrap around the flanges. One end of each band (the dead end) is anchored to the drawworks frame and does not move. The other end (the live end) is attached to a brake lever by means of a linkage. Moving the brake lever pulls the live end down, and the whole band tightens around the flange. This slows or stops the drum by friction. The main brake, like the friction clutch, takes advantage of useful friction, where the energy of the moving drum is transferred to the immovable brake bands. This mechanical energy from motion has to go somewhere; here it changes into heat. Remember that converting energy from one form to another is one of the things machines can do.
The auxiliary brake works in combination with the main brake to slow the rate of descent of the traveling block with a heavy load. It functions only when the block is descending. The auxiliary brake ensures that the load descends slowly and smoothly and it lessens wear on the main brake by taking the heavy shock loads (sudden jerking) and continual dead weight off the brake bands.

Always be careful, however, to lower the traveling block slowly enough that the mechanical brake alone could stop it, because the auxiliary brake could fail. The auxiliary brake cannot stop the drum by itself.

The auxiliary brake can be either a hydrodynamic brake (activated by water) or an electrodynamic brake (activated by electricity). It sits next to the drum on the drawworks framework (see fig. 5a). The two types look very similar on the outside.
The catshaft is a long axle that sits on heavy-duty roller bearings in the frame of the drawworks. It runs along the top of the drawworks and sticks out on both sides of it (fig. 54). The catshaft has two catheads on each end and often a sand reel in the middle. Each cathead is a winch that can spool up a wire rope, fiber rope, or chain. The catheads are an integral part of the catshaft and rotate with it.

Figure 54. The catshaft, catheads, and sand (coring) reel
The greatest contribution the rig crew can make to the general benefit of the drilling contractor is to learn and practice good techniques of rig lubrication. Every place on the drawworks where metal rubs against metal needs lubrication. Good lubrication helps the equipment to last as long as possible before breaking. Not only does this mean less expense for replacement parts, but it also means that there is less time when the rig is not drilling because of repairs.

Every tour, the operator provides a certain amount of time for inspecting and servicing the rig. The driller keeps a maintenance record, called a tour report, that includes, for example, when the crew measured oil levels, changed oil, checked oil pressure gauges, serviced and replaced filters, and greased fittings.

Some parts of the drawworks, such as the transmission, need oil lubrication and some parts need grease. Figure 56 shows an

![Grease fitting locations](image.png)
air hoist *n*: a hoist operated by compressed air; a pneumatic hoist. Air hoists are often mounted on the rig floor and are used to lift joints of pipe and other heavy objects.

American National Standards Institute (ANSI) *n*: serves as clearing-house for nationally coordinated voluntary standards for fields ranging from information technology to building construction. Address: 11 W. 42d St., 13th floor; New York, NY 10036; (212) 642-4900.

angle of wrap *n*: the distance that the brake band wraps around the brake flange. Drawworks have an angle of wrap of \(270^\circ\) or more.

angular misalignment *n*: one type of misalignment in a chain-and-sprocket drive. The shafts are not parallel to each other (they form an angle) in either the horizontal or the vertical plane. This pulls the link plates on one side tighter than those on the other side; thus, one side of the chain and sprockets wears faster than the other. Link plates on only one side of the chain break because of fatigue.

ANSI *abbr*: American National Standards Institute.

automatic cathead *n*: see breakout cathead, cathead, makeup cathead.

auxiliary brake *n*: a braking mechanism on the drawworks, supplemental to the mechanical brake, that permits the lowering of heavy hook loads safely at retarded rates without incurring appreciable brake maintenance. There are two types of auxiliary brake—the hydrodynamic and the electrodynamic. In both types, work is converted into heat, which is dissipated through liquid cooling systems. See electrodynamic brake, hydrodynamic brake.

block *n*: any assembly of pulleys on a common framework; in mechanics, one or more pulleys, or sheaves, mounted to rotate on a common axis. The crown block is an assembly of sheaves mounted on beams at the top of the derrick or mast. The drilling line is reeved over the sheaves of the crown block alternately with the sheaves of the traveling block, which is raised and lowered in the derrick or mast by the drilling line. When elevators are attached to a hook on the traveling block and drill pipe is latched in the elevators, the pipe can be raised or lowered. See crown block, traveling block.

brake band *n*: a part of the brake mechanism consisting of a flexible steel band lined with a material that grips a drum when tightened. On a drilling rig, the brake band acts on the flanges of the drawworks drum to control the lowering of the traveling block and its load of drill pipe, casing, or tubing.
Review Questions
LESSONS IN ROTARY DRILLING
Unit I, Lesson 6: The Drawworks and the Compound

1. Name five components of the hoisting system.
 (a)
 (b)
 (c)
 (d)
 (e)
Answers to Review Questions
LESSONS IN ROTARY DRILLING
Unit I, Lesson 6
The Drawworks and the Compound

1. (a) Drilling hook
 (b) Drilling line
 (c) Crown block
 (d) Traveling block
 (e) Drawworks

2. (a) Driller’s console and brake lever
 (b) Low drum drive
 (c) Main brake
 (d) Drum
 (e) High drum drive
 (f) Catshaft and optional sand reel
 (g) Rotary drive countershaft (optional)
 (h) Auxiliary brake

3. (a) High drum drive
 (b) Electric motors
 (c) Drum
 (d) Optional sand reel
 (e) Catshaft drive
 (f) Low drum drive
 (g) Output shaft
 (h) Input shaft

4. T
5. T
6. T

7. mechanical; auxiliary
8. The basic power source; diesel-powered internal-combustion engines
9. compound
10. generators; motors
11. (a) Shafts
 (b) Sprockets
 (c) Roller chain

12. driving; driven
13. T
14. (a), (b), (c) Chain-and-sprocket drives for three speeds
 (d) Gears for reverse speed
 (e) Low drum chain-and-sprocket drive
 (f) High drum chain-and-sprocket drive
 (g) Chain-and-sprocket drive to the ____ catshaft
 (h) Chain-and-sprocket drive to the ____ rotary drive countershaft

15. roller; pin
16. connector; offset
17. even
18. F
19. F
20. angular; offset
21. Too much
22. T
23. It connects and disconnects two rotating shafts.
24. jaw; spline
25. drum; plate (disk)
26. automatically
27. T
28. rims (flanges); bands; blocks
29. live; dead
30. descending
31. F
To obtain additional training materials, contact:

PETEX
THE UNIVERSITY OF TEXAS AT AUSTIN
PETROLEUM EXTENSION SERVICE
1 University Station, R8100
Austin, TX 78712-1100

Telephone: 512-471-5940
or 800-687-4132
FAX: 512-471-9410
or 800-687-7839
E-mail: petex@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex

To obtain information about training courses, contact:

PETEX
HOUSTON TRAINING CENTER
THE UNIVERSITY OF TEXAS
2700 W. W. Thorne Blvd.
Houston, TX 77073

Telephone: 281-443-7144
or 800-687-7052
FAX: 281-443-8722
E-mail: petexhtc@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex